We have a list of points
on the plane. Find the K
closest points to the origin (0, 0)
.
(Here, the distance between two points on a plane is the Euclidean distance.)
You may return the answer in any order. The answer is guaranteed to be unique (except for the order that it is in.)
Example 1:
Input: points = [[1,3],[-2,2]], K = 1
Output: [[-2,2]]
Explanation:
The distance between (1, 3) and the origin is sqrt(10).
The distance between (-2, 2) and the origin is sqrt(8).
Since sqrt(8) < sqrt(10), (-2, 2) is closer to the origin.
We only want the closest K = 1 points from the origin, so the answer is just [[-2,2]].
Example 2:
Input: points = [[3,3],[5,-1],[-2,4]], K = 2
Output: [[3,3],[-2,4]]
(The answer [[-2,4],[3,3]] would also be accepted.)
Note:
1 <= K <= points.length <= 10000
-10000 < points[i][0] < 10000
-10000 < points[i][1] < 10000
这道题给了平面上的一系列的点,让求最接近原点的K个点。基本上没有什么难度,无非就是要知道点与点之间的距离该如何求。一种比较直接的方法就是给这个二维数组排序,自定义排序方法,按照离原点的距离从小到大排序,注意这里我们并不需要求出具体的距离值,只要知道互相的大小关系即可,所以并不需要开方。排好序之后,返回前k个点即可,参见代码如下:
解法一:
class Solution {
public:
vector<vector<int>> kClosest(vector<vector<int>>& points, int K) {
sort(points.begin(), points.end(), [](vector<int>& a, vector<int>& b) {
return a[0] * a[0] + a[1] * a[1] < b[0] * b[0] + b[1] * b[1];
});
return vector<vector<int>>(points.begin(), points.begin() + K);
}
};
下面这种解法是使用最大堆 Max Heap 来做的,在 C++ 中就是用优先队列来做,这里维护一个大小为k的最大堆,里面放一个 pair 对儿,由距离原点的距离,和该点在原数组中的下标组成,这样优先队列就可以按照到原点的距离排队了,距离大的就在队首。这样每当个数超过k个了之后,就将队首的元素移除即可,最后把剩下的k个点存入结果 res 中即可,参见代码如下:
解法二:
class Solution {
public:
vector<vector<int>> kClosest(vector<vector<int>>& points, int K) {
vector<vector<int>> res;
priority_queue<pair<int, int>> pq;
for (int i = 0; i < points.size(); ++i) {
int t = points[i][0] * points[i][0] + points[i][1] * points[i][1];
pq.push({t, i});
if (pq.size() > K) pq.pop();
}
while (!pq.empty()) {
auto t = pq.top(); pq.pop();
res.push_back(points[t.second]);
}
return res;
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/973
类似题目:
Kth Largest Element in an Array
参考资料:
https://leetcode.com/problems/k-closest-points-to-origin/
https://leetcode.com/problems/k-closest-points-to-origin/discuss/217999/JavaC%2B%2BPython-O(N)
LeetCode All in One 题目讲解汇总(持续更新中...)