poj 1011 :Sticks (dfs+剪枝)

题意:给出n根小棒的长度stick[i],已知这n根小棒原本由若干根长度相同的长木棒(原棒)分解而来。求出原棒的最小可能长度。

思路:dfs+剪枝。蛮经典的题目,重点在于dfs剪枝的设计。先说先具体的实现:求出总长度sum和小棒最长的长度max,则原棒可能的长度必在max~sum之间,然后从小到大枚举max~sum之间能被sum整除的长度len,用dfs求出所有的小棒能否拼凑成这个长度,如果可以,第一个len就是答案。

下面就是关键的了,就是这道题dfs的实现和剪枝的设计:

1.以一个小棒为开头,用dfs看看能否把这个小棒拼凑成len长,如果可以,用vis[i]记录下用过的小棒,然后继续以另外一个小棒为开头,以此类推。

2.小棒的长度从大到小排序,这个就不解释了。

3.如果当前最长的小棒不能拼成len长,那么就返回前一步,更改前一步的最长小棒的组合情况(这里不能是全部退出),不用再继续搜索下去了。

4.最重要的,就是比如说17,9,9,9,9,8,8,5,2……如果当前最长小棒为17,它与第一个9组合之后dfs发现不能拼成len,那么17就不用和后面所有的9组合了,而直接和8开始组合。这个剪枝直接从TLE到16MS,很强大。

源代码:(160K 16MS)

#include<iostream>
#include<algorithm>
using namespace std;
const int Max = 65;

int n, len, stick[Max];
bool flag, vis[Max];

bool cmp(int a, int b){
    return a> b;
}

void dfs(int dep, int now_len, int u){   // dep为当前已被用过的小棒数,u为当前要处理的小棒。
    if(flag) return;
    if(now_len == 0){                    //  当前长度为0,寻找下一个当前最长小棒。
        int k = 0;
        while(vis[k]) k ++;              //  寻找第一个当前最长小棒。
        vis[k] = true;
        dfs(dep + 1, stick[k], k + 1);
        vis[k] = false;
        return;
    }
    if(now_len == len){                  //  当前长度为len,即又拼凑成了一根原棒。
        if(dep == n) flag = true;        //  完成的标志:所有的n根小棒都有拼到了。
        else dfs(dep, 0, 0);
        return;
    }
    for(int i = u; i < n; i ++)
        if(!vis[i] && now_len + stick[i]< = len){
            if(!vis[i-1] && stick[i] == stick[i-1]) continue;      //  不重复搜索:最重要的剪枝。
            vis[i] = true;
            dfs(dep + 1, now_len + stick[i], i + 1);
            vis[i] = false;
        }
}

int main(){
    while(scanf("%d", &n)&& n != 0){
        int sum = 0;
        flag = false;
        for(int i = 0; i < n; i ++){
            scanf("%d", &stick[i]);
            sum += stick[i];
        }
        sort(stick, stick + n, cmp);     //  从大到小排序。
        for(len = stick[0]; len < sum; len ++)
            if(sum % len == 0){          //  枚举能被sum整除的长度。
                memset(vis, 0, sizeof(vis));
                dfs(0, 0, 0);
                if(flag) break;
            }
        printf("%d\n", len);
    }
    return 0;
}

上一篇:6、Java并发编程:volatile关键字解析


下一篇:poj 1724:ROADS(DFS + 剪枝)