n=4;%确定需要LU分解的矩阵维数
%A=zeros(n,n);
L=eye(n,n);P=eye(n,n);U=zeros(n,n);%初始化矩阵
tempU=zeros(1,n);tempP=zeros(1,n);%初始化中间变量矩阵
A=[1 2 -3 4;4 8 12 -8;2 3 2 1;-3 -1 1 -4];%需要LU分解矩阵赋值
for p=1:n %将A矩阵赋值给U
for q=1:n
U(p,q)=A(p,q);
end
end
jt=1;kt=0;
for i=1:n-1
jt=jt+1;
kt=kt+1;
ii=U(i,i);
if ii==0 %主元为零,进行行变换
for m=i:n
if U(m,i)~=0
tempU=U(i,:);
U(i,:)=U(m,:);
U(m,:)=tempU;
ii=U(i,i);
%%
tempP=P(i,:); %行变换结果存储在P中
P(i,:)=P(m,:);
P(m,:)=tempP;
break;
end
end
%disp(ii);
end
disp(ii);
for j=jt:n %%两重循环,完成高斯消元
perj=U(j,i)/ii;
L(j,i)=perj;
for k=kt:n
U(j,k)=U(j,k)-perj*U(i,k);
end
end
end savefile='LUdapart';
save(savefile)