JDK1.8线程池 ThreadPoolExecutor详解

线程属性

private static final int COUNT_BITS = Integer.SIZE - 3;
private static final int CAPACITY   = (1 << COUNT_BITS) - 1;
  • Integer.SIZE是32
  • COUNT_BITS是29
  • 容量CAPACITY是,二进制来看是00011111111111111111111111111111,29个1

线程状态

    // runState is stored in the high-order bits
    private static final int RUNNING    = -1 << COUNT_BITS;
    private static final int SHUTDOWN   =  0 << COUNT_BITS;
    private static final int STOP       =  1 << COUNT_BITS;
    private static final int TIDYING    =  2 << COUNT_BITS;
    private static final int TERMINATED =  3 << COUNT_BITS;

对-1、0、1、2、3左移29位

  • RUNNING,      10100000000000000000000000000000
  • SHUTDOWN,  00000000000000000000000000000000
  • STOP,           00100000000000000000000000000000
  • TIDYING,       01000000000000000000000000000000
  • TERMINATED,01100000000000000000000000000000

高三位存储的是线程状态,低29位存储的是线程的数量

装箱和开箱

    // Packing and unpacking ctl
    private static int runStateOf(int c)     { return c & ~CAPACITY; }
    private static int workerCountOf(int c)  { return c & CAPACITY; }
    private static int ctlOf(int rs, int wc) { return rs | wc; }
  • runStateOf,对CAPACITY取反,也就是11100000000000000000000000000000,置高3位为1,也就是参数 c 按照 & 操作判断线程状态
  • workerCountOf,通过参数 c 按照 & 操作判断线程数量
  • ctlOf,rs 按位或 wc,初始化的AtomicInteger,是 RUNNING | 0,还是RUNNING 

按照new对象然后执行方法的顺序,先构造函数,execute执行方法,工作者worker,肃清队列purge,拒绝Handler等等

流程图

示例代码

BlockingQueue<Runnable> workQueue = new LinkedBlockingDeque<Runnable>();
ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(10, 20, 10, TimeUnit.SECONDS, workQueue);
threadPoolExecutor.execute(new Runnable() {
    @Override
    public void run() {
        System.out.println("task running...");
    }
});

execute方法流程

JDK1.8线程池 ThreadPoolExecutor详解

当worker数量 > 核心线程池数量时,如果入队成功,addWorker的core参数false,否则就拒绝

addWorker方法流程

JDK1.8线程池 ThreadPoolExecutor详解

参数core为false的时候,在方法中判断数量大小的时候用maximumThreadPoolSize

 JDK1.8线程池 ThreadPoolExecutor详解

构造函数 ThreadPoolExecutor

public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler) {
        if (corePoolSize < 0 ||
            maximumPoolSize <= 0 ||
            maximumPoolSize < corePoolSize ||
            keepAliveTime < 0)
            throw new IllegalArgumentException();
        if (workQueue == null || threadFactory == null || handler == null)
            throw new NullPointerException();
        this.acc = System.getSecurityManager() == null ?
                null :
                AccessController.getContext();
        this.corePoolSize = corePoolSize;
        this.maximumPoolSize = maximumPoolSize;
        this.workQueue = workQueue;
        this.keepAliveTime = unit.toNanos(keepAliveTime);
        this.threadFactory = threadFactory;
        this.handler = handler;
    }

corePoolSize

  • the number of threads to keep in the pool, even if they are idle, unless {@code allowCoreThreadTimeOut} is set
  • 池中要保留的线程数,即使它们处于空闲状态,除非设置了{@code allowCoreThreadTimeOut}

maximumPoolSize

  • the maximum number of threads to allow in the pool
  • 池中允许的最大线程数

keepAliveTime

  • when the number of threads is greater than the core
  • this is the maximum time that excess idle threads will wait for new tasks before terminating
  • 当线程数大于内核数时,多余空闲线程在终止前等待新任务的最长时间

unit

  • the time unit for the {@code keepAliveTime} argument
  • {keepAliveTime}参数的时间单位

workQueue

  • the queue to use for holding tasks before they are executed
  • This queue will hold only the {@code Runnable} tasks submitted by the {@code execute} method
  • 用于在任务完成之前保留任务的队列执行,此队列将仅包含{Runnable},由{execute}方法提交的任务

threadFactory

  • the factory to use when the executor creates a new thread
  • 执行器创建新线程时要使用的工厂

handler

  • the handler to use when execution is blocked because the thread bounds and queue capacities are reached
  • 由于达到线程边界和队列容量而阻止执行时要使用的处理程序

Execute

public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        int c = ctl.get();
        if (workerCountOf(c) < corePoolSize) {
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        else if (!addWorker(command, false))
            reject(command);
    }
}

该方法分三步进行:

第一步

如果正在运行的线程少于corePoolSize,请尝试以给定命令作为第一个线程启动新线程任务

对addWorker的调用以原子方式检查运行状态和worker的数量,在添加了不应该添加的线程下通过返回false防止错误警报

第二步

如果任务可以成功排队,进入此方法后,我们仍然需要再次检查是否应该添加线程

因为自上次检查以来,已存在的某些线程已死亡,或者池子已经关闭不再需要检查

所以我们重新检查状态,如果已停止,在有必要的情况下回滚入队或者如果任务执行结束,则启动新线程

第三步

如果我们无法将任务排队,那么我们将尝试添加一个新线程。如果失败了,我们知道我们已经被关闭或饱和,所以拒绝这个任务

addWorker

    /*
     * Methods for creating, running and cleaning up after workers
     */
    private boolean addWorker(Runnable firstTask, boolean core) {
        retry:
        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN &&
                ! (rs == SHUTDOWN &&
                   firstTask == null &&
                   ! workQueue.isEmpty()))
                return false;

            for (;;) {
                int wc = workerCountOf(c);
                if (wc >= CAPACITY ||
                    wc >= (core ? corePoolSize : maximumPoolSize))
                    return false;
                if (compareAndIncrementWorkerCount(c))
                    break retry;
                c = ctl.get();  // Re-read ctl
                if (runStateOf(c) != rs)
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }
        }

        boolean workerStarted = false;
        boolean workerAdded = false;
        Worker w = null;
        try {
            w = new Worker(firstTask);
            final Thread t = w.thread;
            if (t != null) {
                final ReentrantLock mainLock = this.mainLock;
                mainLock.lock();
                try {
                    // Recheck while holding lock.
                    // Back out on ThreadFactory failure or if
                    // shut down before lock acquired.
                    int rs = runStateOf(ctl.get());

                    if (rs < SHUTDOWN ||
                        (rs == SHUTDOWN && firstTask == null)) {
                        if (t.isAlive()) // precheck that t is startable
                            throw new IllegalThreadStateException();
                        workers.add(w);
                        int s = workers.size();
                        if (s > largestPoolSize)
                            largestPoolSize = s;
                        workerAdded = true;
                    }
                } finally {
                    mainLock.unlock();
                }
                if (workerAdded) {
                    t.start();
                    workerStarted = true;
                }
            }
        } finally {
            if (! workerStarted)
                addWorkerFailed(w);
        }
        return workerStarted;
    }

Purge 肃清

public void purge() {
    final BlockingQueue<Runnable> q = workQueue;
    try {
        Iterator<Runnable> it = q.iterator();
        while (it.hasNext()) {
            Runnable r = it.next();
            if (r instanceof Future<?> && ((Future<?>)r).isCancelled())
                it.remove();
        }
    } catch (ConcurrentModificationException fallThrough) {
        // Take slow path if we encounter interference during traversal.
// Make copy for traversal and call remove for cancelled entries. // The slow path is more likely to be O(N*N). for (Object r : q.toArray()) if (r instanceof Future<?> && ((Future<?>)r).isCancelled()) q.remove(r); } tryTerminate(); // In case SHUTDOWN and now empty }

尝试从工作队列中删除所有{@link Future}已取消的任务,这种方法可以作为一种有用的方法存储回收操作,这对功能性没有其他影响

取消的任务永远不会执行,但可能会在工作队列中累积,直到工作线程可以活动移除它们。相反,调用此方法会尝试删除它们

但是,如果存在其他线程的干扰,此方法可能无法删除任务

拒绝调用操作者

CallerRunsPolicy

public static class CallerRunsPolicy implements RejectedExecutionHandler {
    /**
     * Creates a {@code CallerRunsPolicy}.
     */
    public CallerRunsPolicy() { }

    /**
      * Executes task r in the caller's thread, unless the executor
      * has been shut down, in which case the task is discarded.
      *
      * @param r the runnable task requested to be executed
      * @param e the executor attempting to execute this task
      */
     public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
         if (!e.isShutdown()) {
             r.run();
         }
     }
}

直接在{@code execute}方法的调用线程中执行被拒绝任务,除非执行器已关闭,在这种情况下,任务被丢弃

AbortPolicy

public static class AbortPolicy implements RejectedExecutionHandler {
    /**
      * Creates an {@code AbortPolicy}.
      */
       public AbortPolicy() { }

        /**
         * Always throws RejectedExecutionException.
         *
         * @param r the runnable task requested to be executed
         * @param e the executor attempting to execute this task
         * @throws RejectedExecutionException always
         */
        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
            throw new RejectedExecutionException("Task " + r.toString() +
                                                 " rejected from " +
                                                 e.toString());
        }
    }

用于抛出{@code RejectedExecutionException}

DiscardPolicy

public static class DiscardPolicy implements RejectedExecutionHandler {
   /**
      * Creates a {@code DiscardPolicy}.
      */
    public DiscardPolicy() { }

    /**
       * Does nothing, which has the effect of discarding task r.
       *
       * @param r the runnable task requested to be executed
       * @param e the executor attempting to execute this task
       */
    public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
    }
}

被拒绝任务的处理程序,以静默方式丢弃被拒绝的任务

DiscardOldestPolicy

public static class DiscardOldestPolicy implements RejectedExecutionHandler {
  /**
     * Creates a {@code DiscardOldestPolicy} for the given executor.
     */
    public DiscardOldestPolicy() { }

  /**
     * Obtains and ignores the next task that the executor
     * would otherwise execute, if one is immediately available,
     * and then retries execution of task r, unless the executor
     * is shut down, in which case task r is instead discarded.
     *
     * @param r the runnable task requested to be executed
     * @param e the executor attempting to execute this task
     */
    public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
        if (!e.isShutdown()) {
            e.getQueue().poll();
            e.execute(r);
        }
    }
}

用于丢弃最旧的未处理任务请求,然后重试{@code execute},除非执行器被关闭,在这种情况下,任务被丢弃

Worker

    private final class Worker
        extends AbstractQueuedSynchronizer
        implements Runnable
    {
        /**
         * This class will never be serialized, but we provide a
         * serialVersionUID to suppress a javac warning.
         */
        private static final long serialVersionUID = 6138294804551838833L;

        /** Thread this worker is running in.  Null if factory fails. */
        final Thread thread;
        /** Initial task to run.  Possibly null. */
        Runnable firstTask;
        /** Per-thread task counter */
        volatile long completedTasks;

        /**
         * Creates with given first task and thread from ThreadFactory.
         * @param firstTask the first task (null if none)
         */
        Worker(Runnable firstTask) {
            setState(-1); // inhibit interrupts until runWorker
            this.firstTask = firstTask;
            this.thread = getThreadFactory().newThread(this);
        }

        /** Delegates main run loop to outer runWorker  */
        public void run() {
            runWorker(this);
        }

        // Lock methods
        //
        // The value 0 represents the unlocked state.
        // The value 1 represents the locked state.

        protected boolean isHeldExclusively() {
            return getState() != 0;
        }

        protected boolean tryAcquire(int unused) {
            if (compareAndSetState(0, 1)) {
                setExclusiveOwnerThread(Thread.currentThread());
                return true;
            }
            return false;
        }

        protected boolean tryRelease(int unused) {
            setExclusiveOwnerThread(null);
            setState(0);
            return true;
        }

        public void lock()        { acquire(1); }
        public boolean tryLock()  { return tryAcquire(1); }
        public void unlock()      { release(1); }
        public boolean isLocked() { return isHeldExclusively(); }

        void interruptIfStarted() {
            Thread t;
            if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
                try {
                    t.interrupt();
                } catch (SecurityException ignore) {
                }
            }
        }
    }

Worker类继承了AQS,实现了Runnable接口,用来创建新线程来执行任务

runWorker

    final void runWorker(Worker w) {
        Thread wt = Thread.currentThread();
        Runnable task = w.firstTask;
        w.firstTask = null;
        w.unlock(); // allow interrupts
        boolean completedAbruptly = true;
        try {
            while (task != null || (task = getTask()) != null) {
                w.lock();
                // If pool is stopping, ensure thread is interrupted;
                // if not, ensure thread is not interrupted.  This
                // requires a recheck in second case to deal with
                // shutdownNow race while clearing interrupt
                if ((runStateAtLeast(ctl.get(), STOP) ||
                     (Thread.interrupted() &&
                      runStateAtLeast(ctl.get(), STOP))) &&
                    !wt.isInterrupted())
                    wt.interrupt();
                try {
                    beforeExecute(wt, task);
                    Throwable thrown = null;
                    try {
                        task.run();
                    } catch (RuntimeException x) {
                        thrown = x; throw x;
                    } catch (Error x) {
                        thrown = x; throw x;
                    } catch (Throwable x) {
                        thrown = x; throw new Error(x);
                    } finally {
                        afterExecute(task, thrown);
                    }
                } finally {
                    task = null;
                    w.completedTasks++;
                    w.unlock();
                }
            }
            completedAbruptly = false;
        } finally {
            processWorkerExit(w, completedAbruptly);
        }
    }

 

 

上一篇:定义线程的两种方式


下一篇:创建线程的三种方式