关键的知识点:
- K-means
- 背景融合-高斯模糊
- 遮罩层生成
算法的流程:
实验步骤:
#include<opencv2\opencv.hpp>
#include<iostream>
using namespace cv;
using namespace std;
Mat mat_to_samples(Mat& image);
int main(int arc, char** argv) {
Mat src = imread("F://testImage//input.png");
namedWindow("input", WINDOW_AUTOSIZE);
imshow("input", src);
//组装数据
Mat points = mat_to_samples(src);
//运行KMeans
int numCluster = 4;
Mat labels;
Mat centers;
TermCriteria criteria = TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1);
kmeans(points, numCluster, labels, criteria, 3, KMEANS_PP_CENTERS, centers);
//去背景遮罩生成
Mat mask = Mat::zeros(src.size(), CV_8UC1);
int index = src.rows*2 + 2;
int cindex = labels.at<int>(index, 0);
int height = src.rows;
int width = src.cols;
Mat dst;
src.copyTo(dst);
for(int row=0;row<height;row++)
{
for (int col = 0; col < width; col++)
{
index = row * width + col;
int label = labels.at<int>(index, 0);
if (label == cindex)//背景
{
dst.at<Vec3b>(row, col)[0] = 0;
dst.at<Vec3b>(row, col)[1] = 0;
dst.at<Vec3b>(row, col)[2] = 0;
mask.at<uchar>(row, col) = 0;
}
else
{
mask.at<uchar>(row, col) = 255;
}
}
}
imshow("mask", mask);
imshow("KMeans-Result", dst);
//腐蚀+高斯模糊
waitKey(0);
return 0;
}
Mat mat_to_samples(Mat& image)
{
int w = image.cols;
int h = image.rows;
int samplecount = w * h;
int dims = image.channels();
Mat points(samplecount, dims, CV_32F, Scalar(10));
int index = 0;
for (int row = 0; row < h; row++)
{
for (int col = 0; col < w; col++)
{
index = row * w + col;
Vec3b bgr = image.at<Vec3b>(row, col);
points.at<float>(index, 0) = static_cast<int>(bgr[0]);
points.at<float>(index, 1) = static_cast<int>(bgr[1]);
points.at<float>(index, 2) = static_cast<int>(bgr[2]);
}
}
return points;
}
去背景遮罩生成结果:
完整代码:
#include<opencv2\opencv.hpp>
#include<iostream>
using namespace cv;
using namespace std;
Mat mat_to_samples(Mat& image);
int main(int arc, char** argv) {
Mat src = imread("F://testImage//input.png");
namedWindow("input", WINDOW_AUTOSIZE);
imshow("input", src);
//组装数据
Mat points = mat_to_samples(src);
//运行KMeans
int numCluster = 4;
Mat labels;
Mat centers;
TermCriteria criteria = TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 10, 0.1);
kmeans(points, numCluster, labels, criteria, 3, KMEANS_PP_CENTERS, centers);
//去遮罩生成
Mat mask = Mat::zeros(src.size(), CV_8UC1);
int index = src.rows*2 + 2;
int cindex = labels.at<int>(index, 0);
int height = src.rows;
int width = src.cols;
Mat dst;
src.copyTo(dst);
for(int row=0;row<height;row++)
{
for (int col = 0; col < width; col++)
{
index = row * width + col;
int label = labels.at<int>(index, 0);
if (label == cindex)//背景
{
dst.at<Vec3b>(row, col)[0] = 0;
dst.at<Vec3b>(row, col)[1] = 0;
dst.at<Vec3b>(row, col)[2] = 0;
mask.at<uchar>(row, col) = 0;
}
else
{
mask.at<uchar>(row, col) = 255;
}
}
}
imshow("mask", mask);
imshow("KMeans-Result", dst);
//腐蚀+高斯模糊
Mat k = getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1));
erode(mask, mask, k);
imshow("erode-mask", mask);
GaussianBlur(mask, mask, Size(3, 3), 0, 0);
imshow("Blur Mask", mask);
//通道混合
Vec3b color;
//RNG rng(12345);
//背景替换为红色
color[0] = 0;//rng.uniform(0, 255);
color[1] = 0;//rng.uniform(0, 255);
color[2] = 255;//rng.uniform(0, 255);
Mat result(src.size(), src.type());
double w = 0.0;
int b = 0, g = 0, r = 0;
int b1 = 0, g1 = 0, r1 = 0;
int b2 = 0, g2 = 0, r2 = 0;
for (int row = 0; row < height; row++)
{
for (int col = 0; col < width; col++)
{
int m = mask.at<uchar>(row, col);
if (m == 255)
{
result.at<Vec3b>(row, col) = src.at<Vec3b>(row, col);//前景
}
else if(m==0)
{
result.at<Vec3b>(row, col) = color;//背景
}
else
{
w = m / 255.0;
b1 = src.at<Vec3b>(row, col)[0];
g1 = src.at<Vec3b>(row, col)[1];
r1 = src.at<Vec3b>(row, col)[2];
b2 = color[0];
g2 = color[1];
r2 = color[2];
b = b1 * w + b2 * (1.0 - w);
g = g1 * w + g2 * (1.0 - w);
r = r1 * w + r2 * (1.0 - w);
result.at<Vec3b>(row, col)[0] = b;
result.at<Vec3b>(row, col)[1] = g;
result.at<Vec3b>(row, col)[2] = r;
}
}
}
imshow("背景替换", result);
waitKey(0);
return 0;
}
Mat mat_to_samples(Mat& image)
{
int w = image.cols;
int h = image.rows;
int samplecount = w * h;
int dims = image.channels();
Mat points(samplecount, dims, CV_32F, Scalar(10));
int index = 0;
for (int row = 0; row < h; row++)
{
for (int col = 0; col < w; col++)
{
index = row * w + col;
Vec3b bgr = image.at<Vec3b>(row, col);
points.at<float>(index, 0) = static_cast<int>(bgr[0]);
points.at<float>(index, 1) = static_cast<int>(bgr[1]);
points.at<float>(index, 2) = static_cast<int>(bgr[2]);
}
}
return points;
}
结果如下所示: