layer_dimensions = [11 22 33 22 11]';
ld_size = size(layer_dimensions , 1);
% what is deal
[x rx dx rdx y ry dy rdy dphi] = deal( cell( ld_size , 1 ) );
[W rW dW rdW] = deal( cell( ld_size-1 , 1 ) ); numsamples = 100;
%initialize weight and x,y, always allocate memory first
for i = 1:ld_size
x{i} = zeros( layer_dimensions( i ) , numsamples );
y{i} = x{i};
if i<ld_size
W{i} = rand( layer_dimensions( i ) ,layer_dimensions( i+1 ) );
end
end
%initialize
inputs = 0*ones(layer_dimensions(1),numsamples);
y{1} = inputs;
dphi{1} = zeros(size(y{1}));
ry{1} = dphi{1}; numepoches = 100;
numbatches = 10;
for iii = 1:numepoches
for ii = 1:numbatches
% f0 pass
for i = 2:ld_size
x{i} = W{i-1}'*y{i-1};
y{i} = sigmoid(x{i});
dphi{i} = y{i}.*(1-y{i}); %for backpropagate
end
% r1 pass
dy{ld_size} = y{ld_size} - y{1};
error=sum(sum(abs(dy{ld_size})))
dx{ld_size} = dphi{ld_size} .* dy{ld_size};
dW{ld_size-1} = y{ld_size-1} * dx{ld_size}';
for i = ld_size-1:-1:2
dy{i} = W{i} * dx{i+1};
W{i} = W{i} - 0.3 * dW{i};
dx{i} = dphi{i} .* dy{i};
dW{i-1} = y{i-1} * dx{i}';
end
% f1 pass end
end %test
numtestsamples=3;
for i = 1:ld_size
x{i} = zeros( layer_dimensions( i ) , numtestsamples );
y{i} = x{i};
end
inputs = zeros(layer_dimensions(1),numtestsamples);
y{1} = inputs;
dphi{1} = zeros(size(y{1}));
ry{1} = dphi{1};
for i = 2:ld_size
x{i} = W{i-1}'*y{i-1};
y{i} = sigmoid(x{i});
dphi{i} = y{i}.*(1-y{i}); %for backpropagate
end
y{ld_size}