A:签到。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int a[];
int main()
{
//freopen("a.in","r",stdin);
//freopen("a.out","w",stdout);
for (int i=;i<;i++) a[i]=read();
sort(a,a+);
if (a[]==&&a[]==&&a[]==&&a[]==) cout<<"YES";
else cout<<"NO";
}
B:签到*2。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
char s[];
int n;
int main()
{
//freopen("a.in","r",stdin);
//freopen("a.out","w",stdout);
scanf("%s",s);n=strlen(s);
char a[]="keyence";
if (n<) cout<<"NO";
else
{
int x=,y=;
for (int i=;i<;i++) if (s[i]==a[i]) x++;else break;
for (int i=n-;i>n-;i--) if (s[i]==a[-(n-i)]) y++;else break;
if (x+y>=) cout<<"YES";
else cout<<"NO";
}
}
C:按ai-bi从小到大排序,依次将剩余最多的分配给需求最大的即可。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 100010
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,c[N];
ll ans;
struct data
{
int x,y;
bool operator <(const data&a) const
{
return x-y<a.x-a.y;
}
}a[N];
int main()
{
//freopen("a.in","r",stdin);
//freopen("a.out","w",stdout);
n=read();
for (int i=;i<=n;i++) a[i].x=read();
for (int i=;i<=n;i++) a[i].y=read();
sort(a+,a+n+);
for (int i=;i<=n;i++) c[i]=a[i].x;
for (int i=;i<=n;i++) ans+=a[i].x-a[i].y;
if (ans<) {cout<<-;return ;}
int x=n,ans=;
for (int i=;i<=n;i++)
{
if (a[i].x>=a[i].y) break;
while (a[i].y-a[i].x>a[x].x-a[x].y)
{
a[i].x+=a[x].x-a[x].y;
a[x].x=a[x].y;
x--;
}
a[x].x-=a[i].y-a[i].x,a[i].x=a[i].y;
}
for (int i=;i<=n;i++) if (c[i]!=a[i].x) ans++;
cout<<ans;
}
D:按数从大到小考虑,如果其作为某行最大值出现就会多一行被占领,列同理。记录当前被占领的行和列的数量,每次考虑填当前数的方案数,根据其是否在行列最大值中出现,分类讨论一下,给答案乘上这个方案数即可。这个弱智的不行的讨论写了我一年。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 1010
#define P 1000000007
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,a[N],b[N],posa[N*N],posb[N*N],ans;
int row,line;
int main()
{
//freopen("a.in","r",stdin);
//freopen("a.out","w",stdout);
n=read(),m=read();
for (int i=;i<=n;i++)
{
a[i]=read();
if (posa[a[i]]) {cout<<;return ;}
posa[a[i]]=i;
}
for (int i=;i<=m;i++)
{
b[i]=read();
if (posb[b[i]]) {cout<<;return ;}
posb[b[i]]=i;
}
row=,line=;ans=;
for (int i=n*m;i>=;i--)
{
if (posa[i]&&posb[i]) {row++,line++;continue;}
if (!posa[i]&&!posb[i])
{
if (row*line-(n*m-i)<=) {cout<<;return ;}
ans=1ll*ans*(row*line-(n*m-i))%P;
}
if (posa[i]) ans=1ll*ans*line%P,row++;
if (posb[i]) ans=1ll*ans*row%P,line++;
}
cout<<ans;
}
result:rank 241 rating +19
E:分治,每次考虑跨越中点的边,此时可以将边权中的绝对值分配到点权上。找到两边各自点权最小的点i0,、j0,将所有包含这两点之一且跨越中点的边加进图中,最后跑kruskal即可。因为考虑边(i,j),其边权一定大于(i0,j)和(i,j0),众所周知环上的最大边不可能出现在MST中。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 200010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,d,a[N],fa[N],t;
ll ans;
struct data
{
int x,y;ll z;
bool operator <(const data&a) const
{
return z<a.z;
}
}e[N<<5];
int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
ll calcl(int i)
{
return a[i]-1ll*i*d;
}
ll calcr(int i)
{
return a[i]+1ll*i*d;
}
void solve(int l,int r)
{
if (l==r) return;
int mid=l+r>>1;
solve(l,mid);
solve(mid+1,r);
int L=l;
for (int i=l;i<=mid;i++) if (calcl(i)<calcl(L)) L=i;
int R=r;
for (int i=mid+1;i<=r;i++) if (calcr(i)<calcr(R)) R=i;
for (int i=l;i<=mid;i++) e[++t]=(data){i,R,calcl(i)+calcr(R)};
for (int i=mid+1;i<=r;i++) e[++t]=(data){L,i,calcl(L)+calcr(i)};
}
signed main()
{
freopen("e.in","r",stdin);
freopen("e.out","w",stdout);
n=read(),d=read();
for (int i=1;i<=n;i++) a[i]=read();
solve(1,n);
for (int i=1;i<=n;i++) fa[i]=i;
sort(e+1,e+t+1);
for (int i=1;i<=t;i++)
if (find(e[i].x)!=find(e[i].y))
{
fa[find(e[i].x)]=find(e[i].y);
ans+=e[i].z;
}
cout<<ans;
return 0;
//NOTICE LONG LONG!!!!!
}
另一种做法是直接用线段树维护prim的过程。发现早就忘了prim是啥了。
F:正常的想法是计算第i次切割的贡献,但似乎很难低于n2。
换一种思路,考虑计算以点(i,j)为左下角的矩形的贡献。这个矩形在选择第i行和第j列切割后出现,出现时贡献为1,出现后每切一刀贡献+1。不妨先考虑i,j>0的情况。
为了便于考虑,改为计算该矩形贡献的期望。
矩形首次出现产生的贡献显然就是i行j列都在前k次切割中出现的概率,这个概率显然为C(k,2)/C(n+m,2),即一共有C(n+m,2)对,该对在其中等概率出现。
对于出现后的贡献,考虑是切x时产生的贡献,这相当于是i,j,x都在前k次中出现,且x在i和j之后出现,那么概率是1/3*C(k,3)/C(n+m,3)。x有n+m-2种取值,所以再乘上n+m-2。
i=0或j=0的情况类似。当然求的是期望最后别忘了换成总贡献。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 20000010
#define P 1000000007
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,m,k,fac[N],inv[N],ans;
int C(int n,int m){if (m>n) return 0;return 1ll*fac[n]*inv[m]%P*inv[n-m]%P;}
int invC(int n,int m){if (m>n) return 0;return 1ll*inv[n]*fac[m]%P*fac[n-m]%P;}
signed main()
{
n=read(),m=read(),k=read();
fac[0]=1;for (int i=1;i<=n+m;i++) fac[i]=1ll*fac[i-1]*i%P;
inv[0]=inv[1]=1;for (int i=2;i<=n+m;i++) inv[i]=P-1ll*(P/i)*inv[P%i]%P;
for (int i=2;i<=n+m;i++) inv[i]=1ll*inv[i-1]*inv[i]%P;
ans=1ll*C(k,2)*invC(n+m,2)%P;
ans=(ans+1ll*invC(3,1)*C(k,3)%P*invC(n+m,3)%P*(n+m-2))%P;
ans=1ll*ans*n%P*m%P;
int ans1=0;
ans1=1ll*C(k,1)*invC(n+m,1)%P;
ans1=(ans1+1ll*invC(2,1)*C(k,2)%P*invC(n+m,2)%P*(n+m-1))%P;
ans1=1ll*ans1*(n+m)%P;
ans=(ans+ans1+k)%P;
cout<<1ll*ans*C(n+m,k)%P*fac[k]%P;
return 0;
//NOTICE LONG LONG!!!!!
}