用ECharts绘制Prometheus图表,实现类似Grafana的自定义Dashboard

  大家一般都是用Grafana自定义Dashboard来监控Prometheus数据的,作者这次尝试用ECharts来绘制Prometheus数据图表,一方面可以减少依赖,另一方面可以将监控界面灵活的集成进应用系统。至于如何在被监测机器上安装NodeExporter以及如何部署Prometheus作者就不描述了,园子里有很多文章介绍。

一、数据查询及转换

  Prometheus提供了Http Api来执行promql查询,但需要将返回的数据格式转换为ECharts的格式,好在EChars的xAxis.type可以设置为'time'类型,与Prometheus返回的格式接近。作者写了个简单的服务来执行查询及转换数据,详见以下代码:

public class MetricService
{
    private static readonly HttpClient http = new HttpClient()
    {
        //请修改指向Prometheus地址
        BaseAddress = new Uri("http://10.211.55.2:9090/api/v1/"),
        Timeout = TimeSpan.FromSeconds(2)
    };

    public async Task<object> GetCpuUsages(string node, DateTime start, DateTime end)
    {
        var promql = $"100-irate(node_cpu{{instance='{node}:9100',mode='idle'}}[5m])*100";
        return await QueryRange(promql, start, end, 20, 2);
    }

    public async Task<object> GetMemUsages(string node, DateTime start, DateTime end)
    {
        var promql = $"(1-(node_memory_MemAvailable{{instance='{node}:9100'}}/(node_memory_MemTotal{{instance='{node}:9100'}})))*100";
        return await QueryRange(promql, start, end, 20, 2);
    }

    public async Task<object> GetNetTraffic(string node, DateTime start, DateTime end)
    {
        var downql = $"irate(node_network_receive_bytes{{instance='{node}:9100',device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}}[5m])";
        var ls = await QueryRange(downql, start, end, 15/*4*/, 0);
        var upql = $"irate(node_network_transmit_bytes{{instance='{node}:9100',device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}}[5m])";
        ls.Add(await QueryRange(upql, start, end, 15/*4*/, 0));
        return ls;
    }

    public async Task<object> GetDiskIO(string node, DateTime start, DateTime end)
    {
        var readql = $"irate(node_disk_bytes_read{{instance='{node}:9100'}}[1m])";
        var ls = await QueryRange(readql, start, end, 15/*10*/, 0);
        var writeql = $"irate(node_disk_bytes_written{{instance='{node}:9100'}}[1m])";
        ls.Add(await QueryRange(writeql, start, end, 15/*10*/, 0));
        return ls;
    }

    #region ====Parse PromQL====
    private static async Task<List<object>> QueryRange(string promql, DateTime start, DateTime end, int step, int round)
    {
        if (start >= end) throw new ArgumentOutOfRangeException();
        var ts1 = (int)(start.ToUniversalTime() - DateTime.UnixEpoch).TotalSeconds;
        var ts2 = (int)(end.ToUniversalTime() - DateTime.UnixEpoch).TotalSeconds;
        var res = await http.GetAsync($"query_range?query={promql}&start={ts1}&end={ts2}&step={step}s");
        var stream = await res.Content.ReadAsStreamAsync();
        using (var sr = new System.IO.StreamReader(stream))
        using (var jr = new JsonTextReader(sr))
        {
            return ParseToSeries(jr, round);
        }
    }

    private static List<object> ParseToSeries(JsonTextReader jr, int round)
    {
        if (!jr.Read() || jr.TokenType != JsonToken.StartObject) throw new Exception();
        if (!jr.Read() || jr.TokenType != JsonToken.PropertyName || (string)jr.Value != "status")
            throw new Exception();
        var status = jr.ReadAsString();
        if (status != "success") throw new Exception();
        if (!jr.Read() || jr.TokenType != JsonToken.PropertyName || (string)jr.Value != "data")
            throw new Exception();

        if (!jr.Read() || jr.TokenType != JsonToken.StartObject) throw new Exception();
        if (!jr.Read() || jr.TokenType != JsonToken.PropertyName || (string)jr.Value != "resultType")
            throw new Exception();
        var resultType = jr.ReadAsString();
        if (!jr.Read() || jr.TokenType != JsonToken.PropertyName || (string)jr.Value != "result")
            throw new Exception();

        return ReadResultArray(jr, round);
        //No need read others
    }

    private static List<object> ReadResultArray(JsonTextReader jr, int round)
    {
        if (!jr.Read() || jr.TokenType != JsonToken.StartArray) throw new Exception();

        var ls = new List<object>();
        do
        {
            if (!jr.Read()) throw new Exception();
            if (jr.TokenType == JsonToken.EndArray) break;
            if (jr.TokenType != JsonToken.StartObject) throw new Exception();
            ls.Add(ReadResultItem(jr, round));
        } while (true);
        return ls;
    }

    private static List<double[]> ReadResultItem(JsonTextReader jr, int round)
    {
        //已读取StartObject标记
        if (!jr.Read() || jr.TokenType != JsonToken.PropertyName || (string)jr.Value != "metric")
            throw new Exception();
        ReadMetric(jr);

        if (!jr.Read() || jr.TokenType != JsonToken.PropertyName || (string)jr.Value != "values")
            throw new Exception();
        var values = ReadValues(jr, round);
        if (!jr.Read() || jr.TokenType != JsonToken.EndObject) throw new Exception();
        return values;
    }

    private static void ReadMetric(JsonTextReader jr)
    {
        if (!jr.Read() || jr.TokenType != JsonToken.StartObject) throw new Exception();
        do
        {
            //PropertyName or EndObject
            if (!jr.Read()) throw new Exception();
            if (jr.TokenType == JsonToken.EndObject) return;
            //PropertyValue
            jr.Read();
        } while (true);
    }

    private static List<double[]> ReadValues(JsonTextReader jr, int round)
    {
        if (!jr.Read() || jr.TokenType != JsonToken.StartArray) throw new Exception();

        var ls = new List<double[]>();
        do
        {
            if (!jr.Read()) throw new Exception();
            if (jr.TokenType == JsonToken.EndArray) break;
            if (jr.TokenType != JsonToken.StartArray) throw new Exception();
            var ts = jr.ReadAsDouble().Value * 1000; //PromQL时间*1000
            var value = Math.Round(double.Parse(jr.ReadAsString()), round, MidpointRounding.ToEven); //PromQL值为字符串
            ls.Add(new double[] { ts, value });
            if (!jr.Read() || jr.TokenType != JsonToken.EndArray) throw new Exception();
        } while (true);
        return ls;
    }
    #endregion

}

Tip: promql的写法可参考grafana网站相关Dashboard。

二、单指标Vue组件

  作者使用Vue-ECharts作为ECharts的包装,以CPU使用率Vue组件为例:

<v-chart theme="dark" autoresize :options="chartOptions" style="height:250px">
</v-chart>
@Component
export default class CpuUsages extends Vue {
    /** 目标实例IP */
    @Prop({ type: String, default: '10.211.55.3' }) node
    /** 开始时间 */
    @Prop({ type: Date, default: () => { var now = new Date(); return new Date(now.getFullYear(), now.getMonth(), now.getDate()) } }) start
    /** 结束时间 */
    @Prop({ type: Date, default: () => { return new Date() } }) end

    chartOptions = {
        title: { text: 'Cpu Usages', x: 'center' },
        tooltip: { trigger: 'axis' },
        xAxis: { type: 'time' },
        yAxis: { min: 0, max: 100 },
        series: []
    }

    refresh() {
        sys.Services.MetricService.GetCpuUsages(this.node, this.start, this.end).then(res => {
                this.chartOptions.series.splice(0)
                for (var i = 0; i < res.length; ++i) {
                    var seria = { type: 'line', name: 'cpu' + i, data: res[i], showSymbol: false }
                    this.chartOptions.series.push(seria)
                }
            }).catch(err => {
                this.$message(err)
            })
    }

    mounted() {
        this.refresh()
    }
}

三、组合多个组件形成Dashboard

  根据需要可以灵活组合多个指标组件,形成相应的Dashboard界面(如下图所示)。
用ECharts绘制Prometheus图表,实现类似Grafana的自定义Dashboard

四、小结

  感谢Vue、ECharts、Vue-ECharts、Prometheus等项目,使得开发并集成监控Dashboard如此简单。另码文不易,码技术文更不易,所以请您多多推荐!

上一篇:最小生成树Kruskal算法的提出者Joseph Bernard Kruskal,Jr.


下一篇:2019期货招商JR金融项目大盘资金盘系统定制支付通道申请第三方支付接口对接搭建 支付宝微信扫码网关网银银联快捷支付