文章发布于公号【数智物语】 (ID:decision_engine),关注公号不错过每一篇干货。
转自 | AI算法之心(公众号ID:AIHeartForYou)
作者 | 何从庆
近些天经常有小伙伴问到“机器学习如何入门,看哪些资料 ?”,于是乎想根据笔者学习两年多的学习经验,介绍下机器学习如何入门,该看哪些资料?下面我将从以下几个方面整理机器学习入门的资源:
(1)语言:机器学习中常用的语言。
(2)书籍:书中自有黄金屋,机器学习中涉及到的很多数学理论,只看视频或者博客是很难获取到完整的知识框架。
(3)视频:书中有些公式推导很难理解,可以看看大牛们深入浅出的课程。
(4)博客:经常看一些大牛们的分享,对于扩展知识面具有一定的帮助。
(5)比赛:实践是检验学习成果重要标准,参加一些算法竞赛,对于理解算法有着良好的帮助。
(6)论文:对于一些硕士来说,创新是检验学习能力重要体现。
01
语言
“人生苦短,我用python”,python目前已经成为机器学习中最主流的语言,由于其丰富的算法库。
1、numpy: 最基础的python库之一。
地址:http://www.numpy.org/
2、pandas: 常用于数据处理的库。
地址:https://pandas.pydata.org/pandas-docs/stable/
3、scipy: SciPy是一个开源的Python算法库和数学工具包。
地址:https://docs.scipy.org/doc/scipy/reference/tutorial/index.html
4、scikit-learn:sklearn包含众多的算法接口,从监督学习到半监督学习,再到无监督学习。还有评价指标、特征选择等。
地址:https://scikit-learn.org/
5、scikit-multilearn:multi-label的算法库。
地址:http://scikit.ml/
还有一些深度学习的算法库,如:
6、keras:最适合入门深度学习的小伙伴的算法库。
地址:https://keras.io/zh/
还有一些较难的深度学习算法库,如tensorflow,pytorch。
02
书籍
1、《统计学习方法》:李航老师的《统计学习方法》这本书堪称经典,很多同学都靠着这本书找到理想的工作,强力推荐!对于许多想入门机器学习的小伙伴们,建议多看几遍这本书,弄懂算法的每一个细节。
2、《机器学习》:周志华老师的《机器学习》这本书,很多人又称之为西瓜书,也是很有帮助的。基本涵盖机器学习的所有分支,如监督学习,无监督学习,半监督学习,强化学习,特征选择等。
3、《推荐系统实战》:项亮博士的《推荐系统实战》这本书,很适合对于想了解推荐系统的小伙伴们有一定的帮助。
4、《概率论与数理统计》:很多机器学习算法都是从统计学概率论上发展而来的,对于概率知识统计知识不足的小伙伴们,建议研读这本书。
5、《Pattern Recognition and Machine Learning》:如果有小伙伴们英文比较好,小伙伴们也可以看看PRML这本经典的书。
6、《Reinforcement Learning: An Introduction》:如果有小伙伴想研究强化学习,这是一本不错的强化学习入门书籍。
03
视频
如果小伙伴们对于上述书籍看起来很吃力,很难弄懂算法的来龙去脉,建议将书籍(初学者推荐:《统计学习方法》)与视频结合起来,相互促进。
1、吴恩达老师的公开课:网易云上和coursera上都有他的讲课,很基础的版本,建议大家入门的时候多看看这个视频。个人觉得coursera上面的课程比较简单点。
网易云上面的地址:http://open.163.com/special/opencourse/machinelearning.html
coursera上面的地址:
https://www.coursera.org/learn/machine-learning
2、李宏毅老师的课程:李宏毅老师的课程也是比较好,值得大家学习。
这里有整理好的版本:https://blog.csdn.net/soulmeetliang/article/details/77461607
04
博客
国内:
1、火光摇曳:腾讯技术大牛们的博客。
地址:http://www.flickering.cn/
2、美团技术团队的博客:里面也有很多干货。
地址:https://tech.meituan.com/
3、苏剑林的博客里面也全是干货。
地址:https://spaces.ac.cn/
4、还有一些比较大型的博客网站,如博客园,简书,CSDN,知乎等等。
国外:
1、Netflix:Netflix技术博客,很多干货。
地址:https://medium.com/netflix-techblog
2、Towards Data Science:主要分享些概念、idea和代码。
地址:https://towardsdatascience.com/
3、Github: all code is here。
05
比赛
学习机器学习的过程中,如何检验自己学习的成果呢?比赛就是一个比较好的方向,比赛其实可能会为了成绩,抠那千分位,百分位的差距,但是其实在比赛中思考才是最重要的。如何将这些经典的算法应用到工业中,这些算法在工业中的优缺点?慢慢体会!
国内比较大型的算法平台有:
天池大数据:
https://tianchi.aliyun.com/home/
datacastle:
http://www.pkbigdata.com/
datafountain:
https://www.datafountain.cn/
biendata:
https://biendata.com/
kesci:
https://www.kesci.com/
Jdata:
https://jdata.jd.com/
国外比较大型的算法平台有:
kaggle:
https://www.kaggle.com/
比赛平台有很多,这几个是比较出名的平台。大家可以去官网看一看,有很多正在进行中的比赛。另外,还有很多其他的平台,这里暂不一一介绍了。
06
论文
很多即将大四毕业,跨入研究生生活的师弟师妹们,也或者即将迈入研二的师弟师妹呢,是否还在为毕业发愁呢?小论文成为中国硕士毕业老难题!其实,写一篇比较简单的ccf c类的论文并不是很难,或许 ccf b ccf a类的论文确实很难!如何入门呢?看近些年机器学习、人工智能的*会议、期刊论文(会议论文速度更快)。这里我仅整理下会议论文。
值得看的会议文章:
1、数据挖掘类:
SIGKDD:*数据挖掘论文。
2018年accepted paper:
https://www.kdd.org/kdd2018/accepted-papers
2017年accepted paper:
https://www.kdd.org/kdd2017/accepted-papers
2016年accepted paer:
https://www.kdd.org/kdd2016/program/accepted-papers
SIGIR:*推荐系统论文
2018年accepted paper:
http://sigir.org/sigir2018/accepted-papers/
2017年accepted paper:
http://sigir.org/chiir2017/accepted-papers.html
2016年accepted paper:
http://sigir.org/sigir2016/full-papers/
http://sigir.org/sigir2016/short-papers/
还有一些次*会议:CIKM/ECML-PKDD/ICDM/SDM/WSDM
2、机器学习类:
AAAI: *人工智能综合会议
2019年accepted paper:
https://aaai.org/Conferences/AAAI-19/wp-content/uploads/2018/11/AAAI-19_Accepted_Papers.pdf
2018年accepted paper:
https://aaai.org/Conferences/AAAI-18/wp-content/uploads/2017/12/AAAI-18-Accepted-Paper-List.Web_.pdf
2017年accepted paper:
https://www.aaai.org/Conferences/AAAI/2017/aaai17accepted-papers.pdf
IJCAI: *人工智能综合会议
2019年 accepted paper: 审稿中
2018年accepted paper:
http://www.ijcai-18.org/accepted-papers/index.html
2017年accepted paper:
https://ijcai-17.org/accepted-papers.html
ICML :*机器学习会议
2019年accepted paper: 审稿中
2018年accepted paper:
https://icml.cc/Conferences/2018/Schedule?type=Poster
2017年accepted paper:
https://icml.cc/Conferences/2017/Schedule?type=Poster
NIPS:*综合人工智能会议
2019年accpeted paper: 征稿中
2018年accepted paper:
https://nips.cc/Conferences/2018/Schedule?type=Poster
2017年accepted paper:
https://nips.cc/Conferences/2017/Schedule?type=Poster
还有一些其他的专业人工智能会议:如自然语言处理领域的 ACL/EMNLP/NAACL/COLING。偏统计的人工智能会议:AISTATS。
图像的人工智能会议:CVPR/ICCV/ECCV。小伙伴们可以看一些上述与自己相关的会议论文,针对论文的方法的不足,思考改进的方法!
数智优质活动推介
由百度云主办,英特尔、汉得、麦思博协办的《2019百度云智峰会》将于下周四(2019年4月11日)在北京嘉里大酒店举办,在北京的数智粉丝可以到场参与活动,本次活动的分享嘉宾包含百度副总裁、百度云副总经理、百度云高级产品经理、百度云容器资深架构师、百度云存储资深架构师、百度云主任架构师、爱奇艺CDN技术负责人等资深技术大拿,你会听到关于百度和百度云的各类产品和技术实践!本次大会完全免费!免费!免费!(重要的事情说三遍~音视频,在线教育,游戏,资讯阅读等泛互联网人群都可报名),活动报名和议程安排可扫描下方海报中的二维码查看详情。温馨提示:活动限额200名,先到先得。