机器学习-实战-入门-linearSVC和SVC,身高体重与胖瘦关系的分类与预测

作者:橘子派

声明:版权所有,转载请注明出处,谢谢。

 

源码地址:https://github.com/sileixinhua/Python_sklearn_svm_linearSVC_SVC

 

实验环境:

Windows10

Sublime

Anaconda 1.6.0

Python3.6

 

根据现有身高和体重训练模型,再对测试集做出判断

代码功能

一.根据现有数据创建标签

#对数据集进行预处理
import random

def calc_bmi(h, w):
    bmi = w / (h/100) ** 2
    if bmi < 18.5: return "thin"
    if bmi < 25.0: return "normal"
    return "fat"
#bim值小于18.5是瘦,小于25.0是普通,否侧是胖

fp = open("./data/bmi.csv","w",encoding="utf-8")
fp.write("height,weight,label\r\n")

cnt = {"thin":0, "normal":0, "fat":0}
for i in range(20000):
    h = random.randint(120,200)
    w = random.randint(35, 80)
    label = calc_bmi(h, w)
    cnt[label] += 1
    fp.write("{0},{1},{2}\r\n".format(h, w, label))
fp.close()
print("ok,", cnt)

 

二.数据信息可视化绘图

#绘制三种不同类型的数据分布
import matplotlib.pyplot as plt
import pandas as pd

tbl = pd.read_csv("./data/bmi.csv", index_col=2)
#读取数据

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
#三种子图重叠

def scatter(lbl, color):
    b = tbl.loc[lbl]
    ax.scatter(b["weight"],b["height"], c=color, label=lbl)

scatter("fat",    "red")
scatter("normal", "yellow")
scatter("thin",   "purple")
#设置不同属性颜色

ax.legend() 
plt.show()
#显示图像

 

运行结果

机器学习-实战-入门-linearSVC和SVC,身高体重与胖瘦关系的分类与预测

 

三.运用sklearn中的SVM的SVC训练数据并预测结果

#用sklearn的SVC方法来训练数据集,并交叉验证预测精度
from sklearn import cross_validation, svm, metrics
import matplotlib.pyplot as plt
import pandas as pd

tbl = pd.read_csv("./data/bmi.csv")
#读取数据

label = tbl["label"]
#读取数据中的标签列
w = tbl["weight"] / 100 
h = tbl["height"] / 200 
wh = pd.concat([w, h], axis=1)

data_train, data_test, label_train, label_test = cross_validation.train_test_split(wh, label)
#将数据分成两组数据集和测试集

clf = svm.SVC()
clf.fit(data_train, label_train)
#训练数据

predict = clf.predict(data_test)
#预测数据

ac_score = metrics.accuracy_score(label_test, predict)
#生成测试精度
cl_report = metrics.classification_report(label_test, predict)
#生成交叉验证的报告
print(ac_score)
#显示数据精度
print(cl_report)
#显示交叉验证数据集报告

 

运行结果

机器学习-实战-入门-linearSVC和SVC,身高体重与胖瘦关系的分类与预测

交叉验证三组测试集平均预测精度为0.99

 

四.运用sklearn中的SVM的linearSVC训练数据并预测结果

#用sklearn的LinearSVC方法来训练数据集,并交叉验证预测精度
from sklearn import cross_validation, svm, metrics
import matplotlib.pyplot as plt
import pandas as pd

tbl = pd.read_csv("./data/bmi.csv")
#读取数据

label = tbl["label"]
#读取数据中的标签列
w = tbl["weight"] / 100 
h = tbl["height"] / 200 
wh = pd.concat([w, h], axis=1)

data_train, data_test, label_train, label_test = cross_validation.train_test_split(wh,label)
#将数据分成两组数据集和测试集

clf = svm.LinearSVC()
clf.fit(data_train, label_train)
#训练数据

predict = clf.predict(data_test)
#预测数据

ac_score = metrics.accuracy_score(label_test, predict)
#生成测试精度
cl_report = metrics.classification_report(label_test, predict)
#生成交叉验证的报告
print(ac_score)
#显示数据精度
print(cl_report)
#显示交叉验证数据集报告

 

运行结果

机器学习-实战-入门-linearSVC和SVC,身高体重与胖瘦关系的分类与预测

交叉验证三组测试集平均预测精度为0.9182

 

参考文献:

《统计学习方法》

《Web scraping and machine learning by python》

上一篇:AsyncEnumerableExtensions.cs z


下一篇:剑指offer--面试题10--相关