Apache Spark源码走读之24 -- Sort-based Shuffle的设计与实现

欢迎转载,转载请注明出处。

概要

Spark 1.1中对spark core的一个重大改进就是引入了sort-based shuffle处理机制,本文就该处理机制的实现进行初步的分析。

Sort-based Shuffle之初体验

通过一个小的实验来直观的感受一下sort-based shuffle算法会产生哪些中间文件,具体实验步骤如下所述。

步骤1: 修改conf/spark-default.conf, 加入如下内容

spark.shuffle.manager SORT

步骤2: 运行spark-shell

SPARK_LOCAL_IP=127.0.0.1 $SPARK_HOME/bin/spark-shell

步骤3: 执行wordcount

sc.textFile("README.md").flatMap(l => l.split(" ")).map(w=>(w,1)).reduceByKey(_ + _).collect

步骤4: 查看生成的中间文件

find /tmp/spark-local* -type f

文件查找结果如下所示

/tmp/spark-local-20140919091822-aa66/0f/shuffle_0_1_0.index
/tmp/spark-local-20140919091822-aa66/30/shuffle_0_0_0.index
/tmp/spark-local-20140919091822-aa66/0c/shuffle_0_0_0.data
/tmp/spark-local-20140919091822-aa66/15/shuffle_0_1_0.data

可以看到生成了两人种后缀的文件,分别为data和index类型,这两者的用途在后续分析中会详细讲述。

如果我们做一下对比实验,将shuffle模式改为Hash,再来观看生成的文件,就会找到区别。将原先配置文件中的SORT改为HASH,重新启动spark-shell,执行相同的wordcount之后,在tmp目录下找到的文件列表如下。

/tmp/spark-local-20140919092949-14cc/10/shuffle_0_1_3
/tmp/spark-local-20140919092949-14cc/0f/shuffle_0_1_2
/tmp/spark-local-20140919092949-14cc/0f/shuffle_0_0_3
/tmp/spark-local-20140919092949-14cc/0c/shuffle_0_0_0
/tmp/spark-local-20140919092949-14cc/0d/shuffle_0_1_0
/tmp/spark-local-20140919092949-14cc/0d/shuffle_0_0_1
/tmp/spark-local-20140919092949-14cc/0e/shuffle_0_1_1
/tmp/spark-local-20140919092949-14cc/0e/shuffle_0_0_2

两者生成的文件数量差异非常大,具体数值计算如下

  1. 在HASH模式下,每一次shuffle会生成M*R的数量的文件,如上述wordcount例子中,整个job有一次shuffle过程,由于输入文件默认分片为2,故M个数为2,而spark.default.parallelism配置的值为4,故R为4,所以总共生成1*2*4=8个文件。shuffle_0_1_2解读为shuffle+shuffle_id+map_id+reduce_id,故0_1_2表示由第0次shuffle中的第1个maptask生成的文件,该文件内容会被第2个reduce task消费
  2. 在SORT模式下,一个Map Task只生成一个文件,而不管生成的文件要被多少的Reduce消费,故文件个数是M的数量,由于wordcount中的默认分片为2,故只生成两个data文件

多次shuffle

刚才的示例中只有一次shuffle过程,我们可以通过小小的改动来达到两次shuffle,代码如下

sc.textFile("README.md").flatMap(l => l.split(" ")).map(w => (w,1)).reduceByKey(_ + _).map(p=>(p._2,p._1)).groupByKey.collect

上述代码将reduceByKey的结果通过map进行反转,即将原来的(w, count)转换为(count,w),然后根据出现次数进行归类。 groupByKey会再次导致数据shuffle过程。

在HASH模式下产生的文件如下所示

/tmp/spark-local-20140919094531-1cb6/12/shuffle_0_3_3
/tmp/spark-local-20140919094531-1cb6/0c/shuffle_0_0_0
/tmp/spark-local-20140919094531-1cb6/11/shuffle_0_2_3
/tmp/spark-local-20140919094531-1cb6/11/shuffle_0_3_2
/tmp/spark-local-20140919094531-1cb6/11/shuffle_1_1_3
/tmp/spark-local-20140919094531-1cb6/10/shuffle_0_2_2
/tmp/spark-local-20140919094531-1cb6/10/shuffle_0_1_3
/tmp/spark-local-20140919094531-1cb6/10/shuffle_0_3_1
/tmp/spark-local-20140919094531-1cb6/10/shuffle_1_0_3
/tmp/spark-local-20140919094531-1cb6/10/shuffle_1_1_2
/tmp/spark-local-20140919094531-1cb6/0f/shuffle_0_0_3
/tmp/spark-local-20140919094531-1cb6/0f/shuffle_0_3_0
/tmp/spark-local-20140919094531-1cb6/0f/shuffle_0_2_1
/tmp/spark-local-20140919094531-1cb6/0f/shuffle_0_1_2
/tmp/spark-local-20140919094531-1cb6/0f/shuffle_1_0_2
/tmp/spark-local-20140919094531-1cb6/0f/shuffle_1_1_1
/tmp/spark-local-20140919094531-1cb6/0d/shuffle_0_0_1
/tmp/spark-local-20140919094531-1cb6/0d/shuffle_0_1_0
/tmp/spark-local-20140919094531-1cb6/0d/shuffle_1_0_0
/tmp/spark-local-20140919094531-1cb6/0e/shuffle_0_2_0
/tmp/spark-local-20140919094531-1cb6/0e/shuffle_0_1_1
/tmp/spark-local-20140919094531-1cb6/0e/shuffle_0_0_2
/tmp/spark-local-20140919094531-1cb6/0e/shuffle_1_0_1
/tmp/spark-local-20140919094531-1cb6/0e/shuffle_1_1_0

引入一次新的shuffle,产生了大量的中间文件

如果是使用SORT,效果如何呢?只会增加M个文件,由于在新的shuffle过程中,map task数目为4,所以总共的文件是2+4=6。

/tmp/spark-local-20140919094731-034a/29/shuffle_0_3_0.data
/tmp/spark-local-20140919094731-034a/30/shuffle_0_0_0.index
/tmp/spark-local-20140919094731-034a/15/shuffle_0_1_0.data
/tmp/spark-local-20140919094731-034a/36/shuffle_0_2_0.data
/tmp/spark-local-20140919094731-034a/0c/shuffle_0_0_0.data
/tmp/spark-local-20140919094731-034a/32/shuffle_0_2_0.index
/tmp/spark-local-20140919094731-034a/32/shuffle_1_1_0.index
/tmp/spark-local-20140919094731-034a/0f/shuffle_0_1_0.index
/tmp/spark-local-20140919094731-034a/0f/shuffle_1_0_0.index
/tmp/spark-local-20140919094731-034a/0a/shuffle_1_1_0.data
/tmp/spark-local-20140919094731-034a/2b/shuffle_1_0_0.data
/tmp/spark-local-20140919094731-034a/0d/shuffle_0_3_0.index

值得指出的是shuffle_0和shuffle_1的执行次序问题,数字越大越先执行,由于spark job提交的时候是从后往前倒推的,故0是最后将执行,而前面的先执行。

Sort-based Shuffle的设计思想

sort-based shuffle的总体指导思想是一个map task最终只生成一个shuffle文件,那么后续的reduce task是如何从这一个shuffle文件中得到自己的partition呢,这个时候就需要引入一个新的文件类型即index文件。

其具体实现步骤如下:

  1. Map Task在读取自己输入的partition之后,将计算结果写入到ExternalSorter
  2. ExternalSorter会使用一个map来存储新的计算结果,新的计算结果根据partiton分类,如果是有combine操作,则需要将新的值与原有的值进行合并
  3. 如果ExternalSorter中的map占用的内存已经超越了使用的阀值,则将map中的内容spill到磁盘中,每一次spill产生一个不同的文件
  4. 当输入Partition中的所有数据都已经处理完毕之后,这时有可能一部分计算结果在内存中,另一部分计算结果在spill的一到多个文件之中,这时通过merge操作将内存和spill文件中的内容合并整到一个文件里
  5. 最后将每一个partition的在data文件中的起始位置和结束位置写入到index文件

相应的源文件

  1. SortShuffleManager.scala
  2. SortShuffleWriter.scala
  3. ExternalSorter.scala
  4. IndexShuffleBlockManager.scala

几个重要的函数

SortShuffleWriter.write

  override def write(records: Iterator[_ >: Product2[K, V]]): Unit = {
if (dep.mapSideCombine) {
if (!dep.aggregator.isDefined) {
throw new IllegalStateException("Aggregator is empty for map-side combine")
}
sorter = new ExternalSorter[K, V, C](
dep.aggregator, Some(dep.partitioner), dep.keyOrdering, dep.serializer)
sorter.insertAll(records)
} else {
// In this case we pass neither an aggregator nor an ordering to the sorter, because we don't
// care whether the keys get sorted in each partition; that will be done on the reduce side
// if the operation being run is sortByKey.
sorter = new ExternalSorter[K, V, V](
None, Some(dep.partitioner), None, dep.serializer)
sorter.insertAll(records)
} val outputFile = shuffleBlockManager.getDataFile(dep.shuffleId, mapId)
val blockId = shuffleBlockManager.consolidateId(dep.shuffleId, mapId)
val partitionLengths = sorter.writePartitionedFile(blockId, context, outputFile)
shuffleBlockManager.writeIndexFile(dep.shuffleId, mapId, partitionLengths) mapStatus = new MapStatus(blockManager.blockManagerId,
partitionLengths.map(MapOutputTracker.compressSize))
}

ExternalSorter.insertAll

def insertAll(records: Iterator[_  {
if (hadValue) mergeValue(oldValue, kv._2) else createCombiner(kv._2)
}
while (records.hasNext) {
elementsRead += 1
kv = records.next()
map.changeValue((getPartition(kv._1), kv._1), update)
maybeSpill(usingMap = true)
}
} else {
// Stick values into our buffer
while (records.hasNext) {
elementsRead += 1
val kv = records.next()
buffer.insert((getPartition(kv._1), kv._1), kv._2.asInstanceOf[C])
maybeSpill(usingMap = false)
}
}
}

writePartitionedFile将内存中的数据和spill文件中内容一起合并到一个文件当中

def writePartitionedFile(
blockId: BlockId,
context: TaskContext,
outputFile: File): Array[Long] = { // Track location of each range in the output file
val lengths = new Array[Long](numPartitions) if (bypassMergeSort && partitionWriters != null) {
// We decided to write separate files for each partition, so just concatenate them. To keep
// this simple we spill out the current in-memory collection so that everything is in files.
spillToPartitionFiles(if (aggregator.isDefined) map else buffer)
partitionWriters.foreach(_.commitAndClose())
var out: FileOutputStream = null
var in: FileInputStream = null
try {
out = new FileOutputStream(outputFile)
for (i <- 0 until numPartitions) {
in = new FileInputStream(partitionWriters(i).fileSegment().file)
val size = org.apache.spark.util.Utils.copyStream(in, out, false)
in.close()
in = null
lengths(i) = size
}
} finally {
if (out != null) {
out.close()
}
if (in != null) {
in.close()
}
}
} else {
// Either we're not bypassing merge-sort or we have only in-memory data; get an iterator by
// partition and just write everything directly.
for ((id, elements) <- this.partitionedIterator) {
if (elements.hasNext) {
val writer = blockManager.getDiskWriter(
blockId, outputFile, ser, fileBufferSize, context.taskMetrics.shuffleWriteMetrics.get)
for (elem

而数据读取过程中则需要使用IndexShuffleBlockManager来获取Partiton的具体位置

  override def getBlockData(blockId: ShuffleBlockId): ManagedBuffer = {
// The block is actually going to be a range of a single map output file for this map, so
// find out the consolidated file, then the offset within that from our index
val indexFile = getIndexFile(blockId.shuffleId, blockId.mapId) val in = new DataInputStream(new FileInputStream(indexFile))
try {
in.skip(blockId.reduceId * 8)
val offset = in.readLong()
val nextOffset = in.readLong()
new FileSegmentManagedBuffer(
getDataFile(blockId.shuffleId, blockId.mapId),
offset,
nextOffset - offset)
} finally {
in.close()
}
}

参数资料

  1. 详细探究spark的shuffle 实现
  2. spark-2045 sort-based shuffle implementation
上一篇:Unity3D DF根据名称获取多个子控件代码


下一篇:openstack私有云布署实践【9.3 主从controller单向同步glance-image目录】