链表
链表(Linked List)介绍
1 链表是以节点的方式来存储,是链式存储
2 每个节点包含 data 域, next 域:指向下一个节点.
3 如图:发现链表的各个节点不一定是连续存储.
4 链表分带头节点的链表和没有头节点的链表,根据实际的需求来确定
一、单向链表代码实现
public class SingleLinkedListDemo {
class SingleLinkedList {
//先初始化一个头节点, 头节点不要动, 不存放具体的数据
private HeroNode head = new HeroNode(0, "", "");
//返回头节点
public HeroNode getHead() {
return head;
}
//添加节点到单向链表
//思路,当不考虑编号顺序时
//1. 找到当前链表的最后节点
//2. 将最后这个节点的next 指向 新的节点
public void add(HeroNode heroNode) {
//因为head节点不能动,因此我们需要一个辅助节点来遍历 temp
HeroNode temp = head;
//遍历链表,找到最后
while(true) {
//找到链表的最后
if(temp.next == null) {//
break;
}
//如果没有找到最后, 将将temp后移
temp = temp.next;
}
//当退出while循环时,temp就指向了链表的最后
//将最后这个节点的next 指向 新的节点
temp.next = heroNode;
}
//第二种方式在添加英雄时,根据排名将英雄插入到指定位置
//(如果有这个排名,则添加失败,并给出提示)
public void addByOrder(HeroNode heroNode) {
//因为头节点不能动,因此我们仍然通过一个辅助指针(变量)来帮助找到添加的位置
//因为单链表,因为我们找的temp 是位于 添加位置的前一个节点,否则插入不了
HeroNode temp = head;
boolean flag = false; // flag标志添加的编号是否存在,默认为false
while(true) {
if(temp.next == null) {//说明temp已经在链表的最后
break; //
}
if(temp.next.no > heroNode.no) { //位置找到,就在temp的后面插入
break;
} else if (temp.next.no == heroNode.no) {//说明希望添加的heroNode的编号已然存在
flag = true; //说明编号存在
break;
}
temp = temp.next; //后移,遍历当前链表
}
//判断flag 的值
if(flag) { //不能添加,说明编号存在
System.out.printf("准备插入的英雄的编号 %d 已经存在了, 不能加入\n", heroNode.no);
} else {
//插入到链表中, temp的后面
heroNode.next = temp.next;//将原本节点指向的下个节点传给现在新添加的节点
temp.next = heroNode;//然后再让原本节点指向新添加的节点,这样就完成了一次插入
}
}
//修改节点的信息, 根据no编号来修改,即no编号不能改.
//说明
//1. 根据 newHeroNode 的 no 来修改即可
public void update(HeroNode newHeroNode) {
//判断是否空
if(head.next == null) {
System.out.println("链表为空~");
return;
}
//找到需要修改的节点, 根据no编号
//定义一个辅助变量
HeroNode temp = head.next;
boolean flag = false; //表示是否找到该节点
while(true) {
if (temp == null) {
break; //已经遍历完链表
}
if(temp.no == newHeroNode.no) {
//找到
flag = true;
break;
}
temp = temp.next;
}
//根据flag 判断是否找到要修改的节点
if(flag) {
temp.name = newHeroNode.name;
temp.nickname = newHeroNode.nickname;
} else { //没有找到
System.out.printf("没有找到 编号 %d 的节点,不能修改\n", newHeroNode.no);
}
}
//删除节点
//思路
//1. head 不能动,因此我们需要一个temp辅助节点找到待删除节点的前一个节点
//2. 说明我们在比较时,是temp.next.no 和 需要删除的节点的no比较
public void del(int no) {
HeroNode temp = head;
boolean flag = false; // 标志是否找到待删除节点的
while(true) {
if(temp.next == null) { //已经到链表的最后
break;
}
if(temp.next.no == no) {
//找到的待删除节点的前一个节点temp
flag = true;
break;
}
temp = temp.next; //temp后移,遍历
}
//判断flag
if(flag) { //找到
//可以删除
temp.next = temp.next.next;
}else {
System.out.printf("要删除的 %d 节点不存在\n", no);
}
}
//显示链表[遍历]
public void list() {
//判断链表是否为空
if(head.next == null) {
System.out.println("链表为空");
return;
}
//因为头节点,不能动,因此我们需要一个辅助变量来遍历
HeroNode temp = head.next;
while(true) {
//判断是否到链表最后
if(temp == null) {
break;
}
//输出节点的信息
System.out.println(temp);
//将temp后移, 一定小心
temp = temp.next;
}
}
}
//定义HeroNode , 每个HeroNode 对象就是一个节点
static class HeroNode {
public int no;
public String name;
public String nickname;
public HeroNode next; //指向下一个节点
//构造器
public HeroNode(int no, String name, String nickname) {
this.no = no;
this.name = name;
this.nickname = nickname;
}
//为了显示方法,我们重新toString
@Override
public String toString() {
return "HeroNode [no=" + no + ", name=" + name + ", nickname=" + nickname + "]";
}
}
}
二、单链表面试题
求单链表中有效节点的个数
//方法:获取到单链表的节点的个数(如果是带头结点的链表,需求不统计头节点)
/**
*
* @param head 链表的头节点
* @return 返回的就是有效节点的个数
*/
public static int getLength(HeroNode head) {
if(head.next == null) { //空链表
return 0;
}
int length = 0;
//定义一个辅助的变量, 这里我们没有统计头节点
HeroNode cur = head.next;
while(cur != null) {
length++;
cur = cur.next; //遍历
}
return length;
}
查找单链表中的倒数第k个结点 【新浪面试题】
//查找单链表中的倒数第k个结点 【新浪面试题】
//思路
//1. 编写一个方法,接收head节点,同时接收一个index
//2. index 表示是倒数第index个节点
//3. 先把链表从头到尾遍历,得到链表的总的长度 getLength
//4. 得到size 后,我们从链表的第一个开始遍历 (size-index)个,就可以得到
//5. 如果找到了,则返回该节点,否则返回nulll
public static HeroNode findLastIndexNode(HeroNode head, int index) {
//判断如果链表为空,返回null
if(head.next == null) {
return null;//没有找到
}
//第一个遍历得到链表的长度(节点个数)
int size = getLength(head);
//第二次遍历 size-index 位置,就是我们倒数的第K个节点
//先做一个index的校验
if(index <=0 || index > size) {
return null;
}
//定义给辅助变量, for 循环定位到倒数的index
HeroNode cur = head.next; //3 // 3 - 1 = 2
for(int i =0; i< size - index; i++) {
cur = cur.next;
}
return cur;
}
单链表的反转【腾讯面试题】
方法一:创建新链表来保存数据
- 先定义一个节点 reverseHead = new HeroNode();
- 从头到尾遍历原来的链表,每遍历一个节点,就将其取出,并放在新的链表reverseHead 的最前端.
- 原来的链表的head.next = reverseHead.next
//将单链表反转
public static void reversetList(HeroNode head) {
//如果当前链表为空,或者只有一个节点,无需反转,直接返回
if(head.next == null || head.next.next == null) {
return ;
}
//定义一个辅助的指针(变量),帮助我们遍历原来的链表
HeroNode cur = head.next;
HeroNode next = null;// 指向当前节点[cur]的下一个节点
HeroNode reverseHead = new HeroNode(0, "", "");
//遍历原来的链表,每遍历一个节点,就将其取出,并放在新的链表reverseHead 的最前端
//动脑筋
while(cur != null) {
next = cur.next;//先暂时保存当前节点的下一个节点,因为后面需要使用
cur.next = reverseHead.next;//将cur的下一个节点指向新的链表的最前端
reverseHead.next = cur; //将cur 连接到新的链表上
cur = next;//让cur后移
}
//将head.next 指向 reverseHead.next , 实现单链表的反转
head.next = reverseHead.next;
}
方法二:使用栈的数据结构
//可以利用栈这个数据结构,将各个节点压入到栈中,然后利用栈的先进后出的特点,就实现了逆序打印的效果
public static void reversePrint(HeroNode head) {
if(head.next == null) {
return;//空链表,不能打印
}
//创建要给一个栈,将各个节点压入栈
Stack<HeroNode> stack = new Stack<HeroNode>();
HeroNode cur = head.next;
//将链表的所有节点压入栈
while(cur != null) {
stack.push(cur);
cur = cur.next; //cur后移,这样就可以压入下一个节点
}
//将栈中的节点进行打印,pop 出栈
while (stack.size() > 0) {
System.out.println(stack.pop()); //stack的特点是先进后出
}
}
从尾到头打印单链表 【百度,要求方式1:反向遍历 。 方式2:Stack栈】
- 上面的题的要求就是逆序打印单链表.
- 方式1: 先将单链表进行反转操作,然后再遍历即可,这样的做的问题是会破坏原来的单链表的结构,不建议
- 方式2:可以利用栈这个数据结构,将各个节点压入到栈中,然后利用栈的先进后出的特点,就实现了逆序打印的效果.
举例演示栈的使用 Stack
//可以利用栈这个数据结构,将各个节点压入到栈中,然后利用栈的先进后出的特点,就实现了逆序打印的效果
public static void reversePrint(HeroNode head) {
if(head.next == null) {
return;//空链表,不能打印
}
//创建要给一个栈,将各个节点压入栈
Stack<HeroNode> stack = new Stack<HeroNode>();
HeroNode cur = head.next;
//将链表的所有节点压入栈
while(cur != null) {
stack.push(cur);
cur = cur.next; //cur后移,这样就可以压入下一个节点
}
//将栈中的节点进行打印,pop 出栈
while (stack.size() > 0) {
System.out.println(stack.pop()); //stack的特点是先进后出
}
}
三、双向链表
单向链表,查找的方向只能是一个方向,而双向链表可以向前或者向后查找。
单向链表不能自我删除,需要靠辅助节点 ,而双向链表,则可以自我删除,所以前面我们单链表删除时节点,总是找到temp,temp是待删除节点的前一个节点
分析 双向链表的遍历,添加,修改,删除的操作思路===>代码实现
- 遍历 方和 单链表一样,只是可以向前,也可以向后查找
- 添加 (默认添加到双向链表的最后)
(1) 先找到双向链表的最后这个节点
(2) temp.next = newHeroNode
(3) newHeroNode.pre = temp; - 修改 思路和 原来的单向链表一样.
- 删除
(1) 因为是双向链表,因此,我们可以实现自我删除某个节点
(2) 直接找到要删除的这个节点,比如temp
(3) temp.pre.next = temp.next //将temp上节点的next指向temp的下个节点,相当于直接跳过了temp
(4) temp.next.pre = temp.pre; //同理将temp下节点的pre指向temp的上个节点
// 创建一个双向链表的类
static class DoubleLinkedList {
// 先初始化一个头节点, 头节点不要动, 不存放具体的数据
private HeroNode2 head = new HeroNode2(0, "", "");
// 返回头节点
public HeroNode2 getHead() {
return head;
}
// 遍历双向链表的方法
// 显示链表[遍历]
public void list() {
// 因为头节点,不能动,因此我们需要一个辅助变量来遍历
HeroNode2 temp = head.next;
while (true) {
if (temp == null) {
break;
}
// 输出节点的信息
System.out.println(temp);
// 将temp后移, 一定小心
temp = temp.next;
}
}
// 添加一个节点到双向链表的最后.
public void add(HeroNode2 heroNode) {
HeroNode2 temp = head;
while (true) {
if (temp.next == null) {
break;
}
temp = temp.next;
}
// 当退出while循环时,temp就指向了链表的最后
// 形成一个双向链表
temp.next = heroNode;
heroNode.pre = temp;
}
//第二种方式在添加英雄时,根据排名将英雄插入到指定位置
//(如果有这个排名,则添加失败,并给出提示)
public void addByOrder(HeroNode2 heroNode) {
//因为头节点不能动,因此我们仍然通过一个辅助指针(变量)来帮助找到添加的位置
HeroNode2 temp = head;
boolean flag = false; // flag标志添加的编号是否存在,默认为false
while(true) {
if(temp.next == null) {//说明temp已经在链表的最后
break; //
}
if(temp.next.no > heroNode.no) { //位置找到
break;
} else if (temp.next.no == heroNode.no) {//说明希望添加的heroNode的编号已然存在
flag = true; //说明编号存在
break;
}
temp = temp.next; //后移,遍历当前链表
}
//判断flag 的值
if(flag) { //不能添加,说明编号存在
System.out.printf("准备插入的英雄的编号 %d 已经存在了, 不能加入\n", heroNode.no);
} else {
heroNode.next=temp.next;
temp.next.pre=heroNode;
temp.next = heroNode;
heroNode.pre = temp;
}
}
// 修改一个节点的内容, 可以看到双向链表的节点内容修改和单向链表一样
public void update(HeroNode2 newHeroNode) {
// 判断是否空
if (head.next == null) {
System.out.println("链表为空~");
return;
}
// 找到需要修改的节点, 根据no编号
// 定义一个辅助变量
HeroNode2 temp = head.next;
boolean flag = false; // 表示是否找到该节点
while (true) {
if (temp == null) {
break;
}
if (temp.no == newHeroNode.no) {
// 找到
flag = true;
break;//直接退出循环
}
temp = temp.next;
}
// 根据flag 判断是否找到要修改的节点
if (flag) {
temp.name = newHeroNode.name;
temp.nickname = newHeroNode.nickname;
} else { // 没有找到
System.out.printf("没有找到 编号 %d 的节点,不能修改\n", newHeroNode.no);
}
}
// 从双向链表中删除一个节点,
// 说明
// 1 对于双向链表,我们可以直接找到要删除的这个节点
// 2 找到后,自我删除即可
public void del(int no) {
// 判断当前链表是否为空
if (head.next == null) {// 空链表
System.out.println("链表为空,无法删除");
return;
}
HeroNode2 temp = head.next; // 辅助变量(指针)
boolean flag = false; // 标志是否找到待删除节点的
while (true) {
if (temp == null) {
break;
}
if (temp.no == no) {
flag = true;
break;
}
temp = temp.next;
}
// 判断flag
if (flag){
temp.pre.next = temp.next;
// 这里我们的代码有问题?
// 如果是最后一个节点,就不需要执行下面这句话,否则出现空指针
if (temp.next != null) {
temp.next.pre = temp.pre;
}else {
System.out.printf("要删除的 %d 节点不存在\n", no);
}
}
}
}
// 定义HeroNode2 , 每个HeroNode 对象就是一个节点
static class HeroNode2{
public int no;
public String name;
public String nickname;
public HeroNode2 next;// 指向下一个节点, 默认为null
public HeroNode2 pre;//指向上一个节点,默认为null
public HeroNode2(int no, String name, String nickname) {
this.no = no;
this.name = name;
this.nickname = nickname;
}
// 为了显示方法,我们重新toString
@Override
public String toString() {
return "HeroNode [no=" + no + ", name=" + name + ", nickname=" + nickname + "]";
}
}
四、单向环形链表与约瑟夫问题
约瑟夫问题描述
Josephu 问题为: 设编号为1,2,… n的n个人围坐一圈,约定编号为k(1<=k<=n)的人从1开始报数,数到m 的那个人出列,它的下一位又从1开始报数,数到m的那个人又出列,依次类推,直到所有人出列为止,由此产生一个出队编号的序列。
提示: 用一个不带头结点的循环链表来处理Josephu 问题:先构成一个有n个结点的单循环链表,然后由k结点起从1开始计数,计到m时,对应结点从链表中删除,然后再从被删除结点的下一个结点又从1开始计数,直到最后一个结点从链表中删除算法结束。
环形链表
构建一个单向的环形链表思路
- 先创建第一个节点, 让 first 指向该节点,并形成环形
- 后面当我们每创建一个新的节点,就把该节点,加入到已有的环形链表中即可.
遍历环形链表
- 先让一个辅助指针(变量) curBoy,指向first节点
- 然后通过一个while循环遍历 该环形链表即可 curBoy.next == first 结束
根据用户的输入,生成一个小孩出圈的顺序
n = 5 , 即有5个人
k = 1, 从第一个人开始报数
m = 2, 数2下
- 需求创建一个辅助指针(变量) helper , 事先应该指向环形链表的最后这个节点.
补充: 小孩报数前,先让 first 和 helper 移动 k - 1次 - 当小孩报数时,让first 和 helper 指针同时 的移动 m - 1 次
- 这时就可以将first 指向的小孩节点 出圈
first = first .next
helper.next = first
原来first 指向的节点就没有任何引用,就会被回收
出圈的顺序
2->4->1->5->3
代码实现
public class Josepfu {
public static void main(String[] args) {
CircleSingleLinkedList c = new CircleSingleLinkedList();
c.addBoy(2);
}
}
// 创建一个环形的单向链表
class CircleSingleLinkedList{
// 创建一个first节点,当前没有编号
private Boy first = null;
// 添加小孩节点,构建成一个环形的链表
public void addBoy(int nums){
if (nums < 1){
System.out.println("nums的值不正确");
return;
}
Boy curBoy = null; // 辅助指针,帮助构建环形链表
// 使用for来创建我们的环形链表
for (int i = 1; i <= nums; i++) {
// 根据编号,创建小孩节点
Boy boy = new Boy(i);
if (i == 1){
first = boy;
boy.setNext(first);// 构成环
curBoy = first; // 让curBoy指向第一个小孩
System.out.println(curBoy == first);
}else {
//这里使用了双指针的思想,头指针frist和尾指针curBoy(辅助指针),只是curBoy会随着新节点而往后移
//curBoy = boy就是这一行代码,让curBoy保持着指向最后,对于curBoy.setNext(boy)这一行代码很妙
//这里可能会有个疑问:辅助指针指向下一个结点关原本指针指向下一个结点有什么关系?这里是因为curBoy = boy
//这行代码将boy赋值给curBoy时,其实是将地址也赋值过去了,对象间的赋值,因此这时候的指针就是代表boy这个对象
//而当辅助指针指向下个节点时,boy这个对象也会指向下一个boy节点。System.out.println(curBoy == first)
//这行代码结果是true,就是代表curBoy与first都指向同一个地址
curBoy.setNext(boy);
boy.setNext(first);
curBoy = boy;
}
}
}
// 遍历当前的环形链表
public void showBoy() {
// 判断链表是否为空
if (first == null) {
System.out.println("没有任何小孩~~");
return;
}
// 因为first不能动,因此我们仍然使用一个辅助指针完成遍历
Boy curBoy = first;
while (true) {
System.out.printf("小孩的编号 %d \n", curBoy.getNo());
if (curBoy.getNext() == first) {// 说明已经遍历完毕
break;
}
curBoy = curBoy.getNext(); // curBoy后移
}
}
// 根据用户的输入,计算出小孩出圈的顺序
/**
*
* @param startNo
* 表示从第几个小孩开始数数
* @param countNum
* 表示数几下
* @param nums
* 表示最初有多少小孩在圈中
*/
public void countBoy(int startNo, int countNum, int nums){
// 先对数据进行校验
if (first == null || startNo < 1 || startNo > nums) {
System.out.println("参数输入有误, 请重新输入");
return;
}
// 创建要给辅助指针,帮助完成小孩出圈,就是指向尾部,到时候小孩出圈时,这个辅助指针就等于单链表中的temp
//指针,然后用在辅助指针完成删除节点就是小孩出圈的工作
Boy helper = first;
// 需求创建一个辅助指针(变量) helper , 事先应该指向环形链表的最后这个节点
while (true) {
if (helper.getNext() == first) { // 说明helper指向最后小孩节点
break;
}
helper = helper.getNext();
}
//小孩报数前,先让 first 和 helper 移动 startNo - 1次,因为不能保证从第一个小孩开始报数
//要先移动到startNo小孩这里来,因为节点其实是从0开始,所以要减一,另外提一嘴,helper就是first前一个
for(int j = 0; j < startNo - 1; j++) {
first = first.getNext();
helper = helper.getNext();
}
//当小孩报数时,让first 和 helper 指针同时 的移动 m - 1 次, 然后出圈
//这里是一个循环操作,知道圈中只有一个节点
while (true){
if (first == helper){//这里代表只剩下一个节点了
break;
}
//让 first 和 helper 指针同时 的移动 countNum - 1
for(int j = 0; j < countNum - 1; j++){
first = first.getNext();
helper = helper.getNext();
}
//这时first指向的节点,就是要出圈的小孩节点
System.out.printf("小孩%d出圈\n", first.getNo());
first = first.getNext();//将first指针指向下一个节点
helper.setNext(first);//将helper代表的这个节点指向first,这样就可以把出圈的节点删掉了
}
System.out.printf("最后留在圈中的小孩编号%d \n", first.getNo());
}
}
// 创建一个Boy类,表示一个节点
class Boy {
private int no;// 编号
private Boy next; // 指向下一个节点,默认null
public Boy(int no) {
this.no = no;
}
public int getNo() {
return no;
}
public void setNo(int no) {
this.no = no;
}
public Boy getNext() {
return next;
}
public void setNext(Boy next) {
this.next = next;
}
}