题解
真是非常套路的一道题……
考虑\(DP\):设\(f_n\)为\(n\)个积木能搭出的方案数,\(g_n\)为所有方案的高度之和。
容易得到转移方程:
\[ \begin{align*} &f_n=[n=0]+\sum_{i=1}^n {n \choose i} f_{n-i}\\ &g_n=\sum_{i=1}^n {n \choose i} (f_{n-i}+g_{n-i}) \end{align*} \]
发现\(f_n\)似乎更容易搞出来,我们先搞\(f_n\)。
由转移方程可以得到:
\[ \frac{f_n}{n!}=[n=0]+\sum_{i=1}^n \frac{1}{i!} \frac{f_{n-i}}{(n-i)!} \]
设
\[ F(x)=\sum_n \frac{f_n}{n!} x^n\\ S(x)=\sum_{n=1}^{\infty} \frac{1}{n!} x^n \]
则有
\[ \begin{align*} F(x)-1&=F(x)S(x)\\ F(x)&=\frac{1}{1-S(x)} \end{align*} \]
多项式求逆即可。
接下来是求\(g_n\)。
令\(t_n=f_n+g_n\),则有
\[ \frac{g_n}{n!}=\sum_{i=1}^n \frac{1}{i!} \frac{t_{n-i}}{(n-i)!} \]
设
\[ \begin{align*} &G(x)=\sum_n \frac{g_n}{n!} x^n\\ &T(x)=\sum_n \frac{t_n}{n!}=F(x)+G(x) \end{align*} \]
可以得到
\[ G(x)=S(x)T(x)=S(x)F(x)+S(x)G(x)\\ G(x)=\frac{S(x)F(x)}{1-S(x)}=S(x)[F(x)]^2=F(x)(F(x)-1) \]
NTT即可。
最后\(ans_n=\frac{g_n}{f_n}\)。
代码
#include<bits/stdc++.h>
namespace my_std{
using namespace std;
#define pii pair<int,int>
#define fir first
#define sec second
#define MP make_pair
#define rep(i,x,y) for (int i=(x);i<=(y);i++)
#define drep(i,x,y) for (int i=(x);i>=(y);i--)
#define go(x) for (int i=head[x];i;i=edge[i].nxt)
#define sz 400404
typedef long long ll;
const ll mod=998244353;
template<typename T>
inline void read(T& t)
{
t=0;char f=0,ch=getchar();
double d=0.1;
while(ch>'9'||ch<'0') f|=(ch=='-'),ch=getchar();
while(ch<='9'&&ch>='0') t=t*10+ch-48,ch=getchar();
if(ch=='.')
{
ch=getchar();
while(ch<='9'&&ch>='0') t+=d*(ch^48),d*=0.1,ch=getchar();
}
t=(f?-t:t);
}
template<typename T,typename... Args>
inline void read(T& t,Args&... args){read(t); read(args...);}
void file()
{
#ifndef ONLINE_JUDGE
freopen("a.txt","r",stdin);
#endif
}
// inline ll mul(ll a,ll b){ll d=(ll)(a*(double)b/mod+0.5);ll ret=a*b-d*mod;if (ret<0) ret+=mod;return ret;}
}
using namespace my_std;
inline ll ksm(ll x,int y)
{
ll ret=1;
for (;y;y>>=1,x=x*x%mod) if (y&1) ret=ret*x%mod;
return ret;
}
ll inv(ll x){return ksm(x,mod-2);}
int r[sz],limit;
void NTT_init(int n)
{
limit=1;int l=-1;
while (limit<=n+n) limit<<=1,++l;
rep(i,0,limit-1) r[i]=(r[i>>1]>>1)|((i&1)<<l);
}
void NTT(ll *a,int type)
{
rep(i,0,limit-1) if (i<r[i]) swap(a[i],a[r[i]]);
for (int mid=1;mid<limit;mid<<=1)
{
ll Wn=ksm(3,(mod-1)/mid>>1);if (type==-1) Wn=inv(Wn);
for (int len=mid<<1,j=0;j<limit;j+=len)
{
ll w=1;
for (int k=0;k<mid;k++,w=w*Wn%mod)
{
ll x=a[j+k],y=w*a[j+k+mid]%mod;
a[j+k]=(x+y)%mod;a[j+k+mid]=(mod+x-y)%mod;
}
}
}
if (type==1) return;
ll I=inv(limit);
rep(i,0,limit-1) a[i]=a[i]*I%mod;
}
ll tmp1[sz],tmp2[sz];
void PolyInv(ll *a,ll *f,int n)
{
if (n==1) return (void)(f[0]=inv(a[0]));
int mid=(n+1)>>1;
PolyInv(a,f,mid);
NTT_init(n);
rep(i,0,mid-1) tmp1[i]=f[i];
rep(i,0,n-1) tmp2[i]=a[i];
NTT(tmp1,1);NTT(tmp2,1);
rep(i,0,limit-1) tmp1[i]=tmp1[i]*(mod+2-tmp1[i]*tmp2[i]%mod)%mod;
NTT(tmp1,-1);
rep(i,0,n-1) f[i]=tmp1[i];
rep(i,0,limit-1) tmp1[i]=tmp2[i]=0;
}
ll fac[sz],_fac[sz];
void init(){fac[0]=_fac[0]=1;rep(i,1,sz-1) _fac[i]=inv(fac[i]=fac[i-1]*i%mod);}
ll f[sz],g[sz],s[sz];
ll t1[sz],t2[sz],t3[sz],t4[sz];
int main()
{
file();
init();
int n=1e5+5,T;
rep(i,1,n) s[i]=mod-_fac[i];
++s[0];
PolyInv(s,t1,n);
rep(i,1,n) f[i]=t1[i];f[0]=1;
rep(i,0,n) t2[i]=t3[i]=f[i];--t3[0];
NTT_init(n);
NTT(t2,1);NTT(t3,1);
rep(i,0,limit-1) t4[i]=t2[i]*t3[i]%mod;
NTT(t4,-1);
rep(i,1,n) g[i]=t4[i];
read(T);
while (T--) read(n),printf("%lld\n",g[n]*inv(f[n])%mod);
}