设f[i]为i个积木能堆出来的种类,g[i]为i个积木能堆出来的种类和
\[
f[n]=\sum_{i=1}^{n}C_{n}^{i}g[n-i]
\]
\[
g[n]=\sum_{i=1}^{n}C_{n}^{i}f[n-i]+g[n]
\]
理解就是选出包含最后一个的块,然后剩下的按照之前的拼
化简,设s为\( \frac{1}{n!} \),G为\( \frac{g[n]}{n!} \),F为\( \frac{fn]}{n!} \),把组合数拆开,变成卷积形式,然后化简就变成
\[
F=\frac{1}{1-S}
\]
\[
G=F*(F-1)
\]
用多项式求逆即可
#include<iostream>
#include<cstdio>
using namespace std;
const int N=1000005,mod=998244353;
int T,n=1e5+5,s[N],f[N],g[N],a[N],b[N],c[N],t[N],fac[N],inv[N],re[N],lm,bt,ans[N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
int ksm(int a,int b)
{
int r=1;
while(b)
{
if(b&1)
r=1ll*r*a%mod;
a=1ll*a*a%mod;
b>>=1;
}
return r;
}
void dft(int a[],int f)
{
for(int i=0;i<lm;i++)
if(i<re[i])
swap(a[i],a[re[i]]);
for(int i=1;i<lm;i<<=1)
{
int wi=ksm(3,(mod-1)/(i*2));
if(f==-1)
wi=ksm(wi,mod-2);
for(int k=0;k<lm;k+=(i<<1))
{
int w=1,x,y;
for(int j=0;j<i;j++)
{
x=a[j+k];
y=1ll*a[i+j+k]*w%mod;
a[j+k]=(x+y)%mod;
a[i+j+k]=(x-y+mod)%mod;
w=1ll*w*wi%mod;
}
}
}
if(f==-1)
{
int ni=ksm(lm,mod-2);
for(int i=0;i<lm;i++)
a[i]=1ll*a[i]*ni%mod;
}
}
void clc(int len)
{//cerr<<len<<endl;
if(len==0)
{
c[0]=ksm(s[0],mod-2);
return;
}
clc(len>>1);
for(bt=1;(1<<bt)<=len;bt++);
lm=(1<<bt);
for(int i=0;i<lm;i++)
re[i]=(re[i>>1]>>1)|((i&1)<<(bt-1));
for(int i=0;i<len;i++)
t[i]=s[i];
dft(t,1);
dft(c,1);
for(int i=0;i<lm;i++)
c[i]=1ll*c[i]*(mod+2-1ll*c[i]*t[i]%mod)%mod;
dft(c,-1);
for(int i=len;i<=2*lm+1;i++)
c[i]=0;
for(int i=0;i<=2*lm+1;i++)
t[i]=0;
}
int main()
{
n=1e5+5;
fac[0]=inv[0]=1;
for(int i=1;i<=n;i++)
fac[i]=1ll*fac[i-1]*i%mod;
inv[n]=ksm(fac[n],mod-2);
for(int i=n-1;i>=1;i--)
inv[i]=1ll*inv[i+1]*(i+1)%mod;
for(int i=1;i<=n;i++)
s[i]=mod-inv[i];
s[0]++;
for(bt=1;(1<<bt)<=2*n;bt++);
lm=(1<<bt);
clc(lm);
for(int i=1;i<=n;i++)
a[i]=b[i]=f[i]=c[i];
f[0]=a[0]=1,b[0]=0;
// for(int i=0;i<=10;i++)
// cerr<<f[i]<<" ";cerr<<endl;
for(bt=1;(1<<bt)<=2*n;bt++);
lm=(1<<bt);
for(int i=0;i<lm;i++)
re[i]=(re[i>>1]>>1)|((i&1)<<(bt-1));
dft(a,1);
dft(b,1);
for(int i=0;i<lm;i++)
g[i]=1ll*a[i]*b[i]%mod;
dft(g,-1);
for(int i=1;i<=n;i++)
ans[i]=1ll*g[i]*ksm(f[i],mod-2)%mod;//,printf("%d\n",ans[i]);
T=read();
while(T--)
printf("%d\n",ans[read()]);
return 0;
}