可以计算PFH,FPFH,VFH三个特征,默认FPFH
代码如下:
#include <pcl/PCLPointCloud2.h>
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/console/print.h>
#include <pcl/console/parse.h>
#include <pcl/console/time.h>
#include <pcl/features/normal_3d.h>
#include <pcl/features/fpfh.h>
#include <pcl/features/pfh.h>
#include <pcl/features/vfh.h>
using namespace pcl;
using namespace pcl::io;
using namespace pcl::console;
std::string default_feature_name = "FPFHEstimation";
int default_n_k = 0;
double default_n_radius = 0.0;
int default_f_k = 0;
double default_f_radius = 0.0;
void
printHelp (int, char **argv)
{
print_error ("Syntax is: %s input.pcd output.pcd <options>\n", argv[0]);
print_info (" where options are:\n");
print_info (" -feature X = the feature descriptor algorithm to be used (default: ");
print_value ("%s", default_feature_name.c_str ()); print_info (")\n");
print_info (" -n_radius X = use a radius of Xm around each point to determine the neighborhood in normal estimation (default: ");
print_value ("%f", default_n_radius); print_info (")\n");
print_info (" -n_k X = use a fixed number of X-nearest neighbors around each point in normal estimation (default: ");
print_value ("%f", default_n_k); print_info (")\n");
print_info (" -f_radius X = use a radius of Xm around each point to determine the neighborhood in feature extraction (default: ");
print_value ("%f", default_f_radius); print_info (")\n");
print_info (" -f_k X = use a fixed number of X-nearest neighbors around each point in feature extraction(default: ");
print_value ("%f", default_f_k); print_info (")\n");
}
bool
loadCloud (const std::string &filename, pcl::PCLPointCloud2 &cloud)
{
TicToc tt;
print_highlight ("Loading "); print_value ("%s ", filename.c_str ());
tt.tic ();
if (loadPCDFile (filename, cloud) < 0)
return (false);
print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", cloud.width * cloud.height); print_info (" points]\n");
print_info ("Available dimensions: "); print_value ("%s\n", pcl::getFieldsList (cloud).c_str ());
return (true);
}
template <typename FeatureAlgorithm, typename PointIn, typename NormalT, typename PointOut>
void
computeFeatureViaNormals (const pcl::PCLPointCloud2::ConstPtr &input, pcl::PCLPointCloud2 &output,
int argc, char** argv, bool set_search_flag = true)
{
int n_k = default_n_k;
int f_k = default_f_k;
double n_radius = default_n_radius;
double f_radius = default_f_radius;
parse_argument (argc, argv, "-n_k", n_k);
parse_argument (argc, argv, "-n_radius", n_radius);
parse_argument (argc, argv, "-f_k", f_k);
parse_argument (argc, argv, "-f_radius", f_radius);
// Convert data to PointCloud<PointIn>
typename PointCloud<PointIn>::Ptr xyz (new PointCloud<PointIn>);
fromPCLPointCloud2 (*input, *xyz);
// Estimate
TicToc tt;
tt.tic ();
print_highlight (stderr, "Computing ");
NormalEstimation<PointIn, NormalT> ne;
ne.setInputCloud (xyz);
ne.setSearchMethod (typename pcl::search::KdTree<PointIn>::Ptr (new pcl::search::KdTree<PointIn>));
ne.setKSearch (n_k);
ne.setRadiusSearch (n_radius);
typename PointCloud<NormalT>::Ptr normals = typename PointCloud<NormalT>::Ptr (new PointCloud<NormalT>);
ne.compute (*normals);
FeatureAlgorithm feature_est;
feature_est.setInputCloud (xyz);
feature_est.setInputNormals (normals);
feature_est.setSearchMethod (typename pcl::search::KdTree<PointIn>::Ptr (new pcl::search::KdTree<PointIn>));
PointCloud<PointOut> output_features;
if (set_search_flag) {
feature_est.setKSearch (f_k);
feature_est.setRadiusSearch (f_radius);
}
feature_est.compute (output_features);
print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", output.width * output.height); print_info (" points]\n");
// Convert data back
toPCLPointCloud2 (output_features, output);
}
void
saveCloud (const std::string &filename, const pcl::PCLPointCloud2 &output)
{
TicToc tt;
tt.tic ();
print_highlight ("Saving "); print_value ("%s ", filename.c_str ());
pcl::io::savePCDFile (filename, output);
print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", output.width * output.height); print_info (" points]\n");
}
/* ---[ */
int
main (int argc, char** argv)
{
print_info ("Extract features from a point cloud. For more information, use: %s -h\n", argv[0]);
if (argc < 3)
{
printHelp (argc, argv);
return (-1);
}
// Parse the command line arguments for .pcd files
std::vector<int> p_file_indices;
p_file_indices = parse_file_extension_argument (argc, argv, ".pcd");
if (p_file_indices.size () != 2)
{
print_error ("Need one input PCD file and one output PCD file to continue.\n");
return (-1);
}
// Command line parsing
std::string feature_name = default_feature_name;
parse_argument (argc, argv, "-feature", feature_name);
// Load the first file
pcl::PCLPointCloud2::Ptr cloud (new pcl::PCLPointCloud2);
if (!loadCloud (argv[p_file_indices[0]], *cloud))
return (-1);
// Perform the feature estimation
pcl::PCLPointCloud2 output;
if (feature_name == "PFHEstimation")
computeFeatureViaNormals< PFHEstimation<PointXYZ, Normal, PFHSignature125>, PointXYZ, Normal, PFHSignature125>
(cloud, output, argc, argv);
else if (feature_name == "FPFHEstimation")
computeFeatureViaNormals< FPFHEstimation<PointXYZ, Normal, FPFHSignature33>, PointXYZ, Normal, FPFHSignature33>
(cloud, output, argc, argv);
else if (feature_name == "VFHEstimation")
computeFeatureViaNormals< VFHEstimation<PointXYZ, Normal, VFHSignature308>, PointXYZ, Normal, VFHSignature308>
(cloud, output, argc, argv, false);
// Save into the second file
saveCloud (argv[p_file_indices[1]], output);
}
来源:PCL官方示例