PCL估计VFH特征

代码如下:

#include <pcl/PCLPointCloud2.h>
#include <pcl/io/pcd_io.h>
#include <pcl/features/vfh.h>
#include <pcl/console/print.h>
#include <pcl/console/parse.h>
#include <pcl/console/time.h>

using namespace pcl;
using namespace pcl::io;
using namespace pcl::console;

void
printHelp (int, char **argv)
{
  print_error ("Syntax is: %s input.pcd output.pcd\n", argv[0]);
}

bool
loadCloud (const std::string &filename, PointCloud<PointNormal> &cloud)
{
  TicToc tt;
  print_highlight ("Loading "); print_value ("%s ", filename.c_str ());

  tt.tic ();
  if (loadPCDFile<PointNormal> (filename, cloud) < 0)
    return (false);
  print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", cloud.width * cloud.height); print_info (" points]\n");
  print_info ("Available dimensions: "); print_value ("%s\n", getFieldsList (cloud).c_str ());

  // Check if the dataset has normals
  std::vector<pcl::PCLPointField> fields;
  if (getFieldIndex (cloud, "normal_x", fields) == -1)
  {
    print_error ("The input dataset does not contain normal information!\n");
    return (false);
  }
  return (true);
}

void
compute (const PointCloud<PointNormal>::Ptr &input, PointCloud<VFHSignature308> &output)
{
  // Estimate
  TicToc tt;
  tt.tic ();
  
  print_highlight (stderr, "Computing ");

  VFHEstimation<PointNormal, PointNormal, VFHSignature308> ne;
  ne.setSearchMethod (search::KdTree<PointNormal>::Ptr (new search::KdTree<PointNormal>));
  ne.setInputCloud (input);
  ne.setInputNormals (input);
  
  ne.compute (output);

  print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", output.width * output.height); print_info (" points]\n");
}

void
saveCloud (const std::string &filename, const PointCloud<VFHSignature308> &output)
{
  TicToc tt;
  tt.tic ();

  print_highlight ("Saving "); print_value ("%s ", filename.c_str ());
  
  io::savePCDFile (filename, output, false);
  
  print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", output.width * output.height); print_info (" points]\n");
}

/* ---[ */
int
main (int argc, char** argv)
{
  print_info ("Estimate VFH (308) descriptors using pcl::VFHEstimation. For more information, use: %s -h\n", argv[0]);
  bool help = false;
  parse_argument (argc, argv, "-h", help);
  if (argc < 3 || help)
  {
    printHelp (argc, argv);
    return (-1);
  }

  // Parse the command line arguments for .pcd files
  std::vector<int> p_file_indices;
  p_file_indices = parse_file_extension_argument (argc, argv, ".pcd");
  if (p_file_indices.size () != 2)
  {
    print_error ("Need one input PCD file and one output PCD file to continue.\n");
    return (-1);
  }

  // Load the first file
  PointCloud<PointNormal>::Ptr cloud (new PointCloud<PointNormal>);
  if (!loadCloud (argv[p_file_indices[0]], *cloud)) 
    return (-1);

  // Perform the feature estimation
  PointCloud<VFHSignature308> output;
  compute (cloud, output);

  // Save into the second file
  saveCloud (argv[p_file_indices[1]], output);
}

来源:PCL官方示例

上一篇:Redis核心原理与实践--Redis启动过程源码分析


下一篇:Linux环境下,多线程统计txt文件中的单词词频