Description
Solution
个人认为是 \(Loj\) 上这几道分块题中比较好的一道题。
对于这道题,我们对于每一块打一个 \(lazy\) 标记,表示当前块是否被完整赋过值,即全部赋值为 \(c\)。
修改时,整块的直接修改 \(lazy\) 标记,两头多余的部分暴力修改原数组。
注意: 整个块都要重新赋值一遍。
-
在查询范围内的:赋值为 \(c\)。
-
在查询范围外的:赋值为 \(lazy\) 标记。
然后把该块的 \(lazy\) 标记赋值为 \(INF\)。
查询时,整块的直接判断求和,并把 \(lazy\) 改为 \(c\);两头的暴力枚举判断,同时在有 \(lazy\) 标记时进行上述修改。
修改的部分我对着数据调了好久 \(QwQ\)。
经验:一定要想好了在写,不然会漏掉许多细节。
具体见代码吧。
Code
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <map>
#include <cmath>
#define INF 1e18
#define ll long long
#define ri register int
using namespace std;
inline ll read(){
ll x = 0, f = 1;
char ch = getchar();
while(ch < '0' || ch > '9') {if(ch == '-') f = -1; ch = getchar();}
while(ch >= '0' && ch <= '9') x = (x << 3) + (x << 1) + ch - '0', ch = getchar();
return x * f;
}
const ll N = 1e5 + 10;
ll n, B, tot;
ll a[N], be[N], ml[N], mr[N], lazy[N];
inline void build(){
B = sqrt(n);
tot = n / B + (B * B != n);
for(ri i = 1; i <= n; i++)
be[i] = (i - 1) / B + 1;
for(ri i = 1; i <= tot; i++){
lazy[i] = INF;
ml[i] = (i - 1) * B + 1;
mr[i] = i * B;
}
mr[tot] = n;
}
inline ll calc(int l, int r, int c){
ll res = 0;
if(lazy[be[l]] == INF){
for(ri i = l; i <= r; i++)
res += (a[i] == c), a[i] = c;
}else{
if(lazy[be[l]] == c) res += (r - l + 1);
else{
for(int i = l; i <= r; i++) a[i] = c;
for(int i = ml[be[l]]; i < l; i++) a[i] = lazy[be[l]];
for(int i = r + 1; i <= mr[be[l]]; i++) a[i] = lazy[be[l]];
lazy[be[l]] = INF;
}
}
return res;
}
inline ll solve(ll l, ll r, ll c){
if(be[l] == be[r]) return calc(l, r, c);
ll res = 0;
for(ll i = be[l] + 1; i <= be[r] - 1; i++){
if(lazy[i] == INF){
for(ri j = ml[i]; j <= mr[i]; j++)
res += (a[j] == c);
}else if(lazy[i] == c) res += B;
lazy[i] = c;
}
res += calc(l, mr[be[l]], c) + calc(ml[be[r]], r, c);
return res;
}
signed main(){
freopen("#6284.in", "r", stdin);
freopen("#6284.out", "w", stdout);
n = read();
for(ri i = 1; i <= n; i++)
a[i] = read();
build();
for(ri i = 1; i <= n; i++){
ri l = read(), r = read(), c = read();
printf("%lld\n", solve(l, r, c));
}
return 0;
}