Given the head of a graph, return a deep copy (clone) of the graph. Each node in the graph contains a label
(int
) and a list (List[UndirectedGraphNode]
) of its neighbors
. There is an edge between the given node and each of the nodes in its neighbors.
Nodes are labeled uniquely.
We use #
as a separator for each node, and ,
as a separator for node label and each neighbor of the node.
As an example, consider the serialized graph {0,1,2#1,2#2,2}
.
The graph has a total of three nodes, and therefore contains three parts as separated by #
.
- First node is labeled as
0
. Connect node0
to both nodes1
and2
. - Second node is labeled as
1
. Connect node1
to node2
. - Third node is labeled as
2
. Connect node2
to node2
(itself), thus forming a self-cycle.
Visually, the graph looks like the following:
1
/ \
/ \
0 --- 2
/ \
\_/
Note: The information about the tree serialization is only meant so that you can understand error output if you get a wrong answer. You don't need to understand the serialization to solve the problem.
DFS
/**
* Definition for undirected graph.
* struct UndirectedGraphNode {
* int label;
* vector<UndirectedGraphNode *> neighbors;
* UndirectedGraphNode(int x) : label(x) {};
* };
*/
class Solution {
public:
UndirectedGraphNode *cloneGraph(UndirectedGraphNode *node) {
if (node==NULL) return NULL;
if (mp.find(node->label) == mp.end()){
mp[node->label] = new UndirectedGraphNode(node -> label);
for (UndirectedGraphNode* neigh : node -> neighbors)
mp[node->label] -> neighbors.push_back(cloneGraph(neigh));
}
return mp[node->label]; }
private:
unordered_map<int, UndirectedGraphNode*> mp;
};