113. 路径总和 II
题目描述
解法一:低效率的递归回溯
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
List<List<Integer>> result = new ArrayList<>();
int target;
public List<List<Integer>> pathSum(TreeNode root, int targetSum) {
if(root == null)
return result;
this.target = targetSum;
LinkedList<Integer> list = new LinkedList<>();
list.push(root.val);
dfs(root, root.val, list);
return result;
}
public void dfs(TreeNode root, int current, LinkedList<Integer> list){
//if(current > target)
// return;
if(root.left == null && root.right == null){
if(current == target){
LinkedList<Integer> nowlist = new LinkedList<>(list);
Collections.reverse(nowlist);
result.add(nowlist);
}
return;
}
if(root.left != null){
list.push(root.left.val);
dfs(root.left, current + root.left.val, list);
list.pop();
}
if(root.right != null){
list.push(root.right.val);
dfs(root.right, current + root.right.val, list);
list.pop();
}
}
}
解法二:更加高效的回溯
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
List<List<Integer>> result = new ArrayList<>();
int target;
public List<List<Integer>> pathSum(TreeNode root, int targetSum) {
if(root == null)
return result;
this.target = targetSum;
LinkedList<Integer> list = new LinkedList<>();
dfs(root, 0, list);
return result;
}
public void dfs(TreeNode root, int current, LinkedList<Integer> list){
if(root == null)
return;
list.push(root.val);
current += root.val;
if(root.left == null && root.right == null){//是叶子结点
if(current == target){
LinkedList<Integer> nowlist = new LinkedList<>(list);
Collections.reverse(nowlist);
result.add(nowlist);
}
list.pop();
return;
}
dfs(root.left, current, list);
dfs(root.right, current, list);
list.pop();
}
}