1:什么是Spark的RDD???
RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变、可分区、里面的元素可并行计算的集合。RDD具有数据流模型的特点:自动容错、位置感知性调度和可伸缩性。RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度。
2:RDD的属性:
a、一组分片(Partition),即数据集的基本组成单位。对于RDD来说,每个分片都会被一个计算任务处理,并决定并行计算的粒度。用户可以在创建RDD时指定RDD的分片个数,如果没有指定,那么就会采用默认值。默认值就是程序所分配到的CPU Core的数目。
b、一个计算每个分区的函数。Spark中RDD的计算是以分片为单位的,每个RDD都会实现compute函数以达到这个目的。compute函数会对迭代器进行复合,不需要保存每次计算的结果。
c、RDD之间的依赖关系。RDD的每次转换都会生成一个新的RDD,所以RDD之间就会形成类似于流水线一样的前后依赖关系。在部分分区数据丢失时,Spark可以通过这个依赖关系重新计算丢失的分区数据,而不是对RDD的所有分区进行重新计算。
d、一个Partitioner,即RDD的分片函数。当前Spark中实现了两种类型的分片函数,一个是基于哈希的HashPartitioner,另外一个是基于范围的RangePartitioner。只有对于于key-value的RDD,才会有Partitioner,非key-value的RDD的Parititioner的值是None。Partitioner函数不但决定了RDD本身的分片数量,也决定了parent RDD Shuffle输出时的分片数量。
e、一个列表,存储存取每个Partition的优先位置(preferred location)。对于一个HDFS文件来说,这个列表保存的就是每个Partition所在的块的位置。按照“移动数据不如移动计算”的理念,Spark在进行任务调度的时候,会尽可能地将计算任务分配到其所要处理数据块的存储位置。
3:创建RDD:
a、由一个已经存在的Scala集合创建。
val rdd1 = sc.parallelize(Array(,,,,,,,)) b、由外部存储系统的数据集创建,包括本地的文件系统,还有所有Hadoop支持的数据集,比如HDFS、Cassandra、HBase等
val rdd2 = sc.textFile("hdfs://master:9000/wordcount.txt")
4:RDD编程API:
4.1:Transformation:
RDD中的所有转换都是延迟加载的,也就是说,它们并不会直接计算结果。相反的,它们只是记住这些应用到基础数据集(例如一个文件)上的转换动作。只有当发生一个要求返回结果给Driver的动作时,这些转换才会真正运行。这种设计让Spark更加有效率地运行。
常用的Transformation如下所示:
转换 |
含义 |
map(func) |
返回一个新的RDD,该RDD由每一个输入元素经过func函数转换后组成 |
filter(func) |
返回一个新的RDD,该RDD由经过func函数计算后返回值为true的输入元素组成 |
flatMap(func) |
类似于map,但是每一个输入元素可以被映射为0或多个输出元素(所以func应该返回一个序列,而不是单一元素) |
mapPartitions(func) |
类似于map,但独立地在RDD的每一个分片上运行,因此在类型为T的RDD上运行时,func的函数类型必须是Iterator[T] => Iterator[U] |
mapPartitionsWithIndex(func) |
类似于mapPartitions,但func带有一个整数参数表示分片的索引值,因此在类型为T的RDD上运行时,func的函数类型必须是 (Int, Interator[T]) => Iterator[U] |
sample(withReplacement, fraction, seed) |
根据fraction指定的比例对数据进行采样,可以选择是否使用随机数进行替换,seed用于指定随机数生成器种子 |
union(otherDataset) |
对源RDD和参数RDD求并集后返回一个新的RDD |
intersection(otherDataset) |
对源RDD和参数RDD求交集后返回一个新的RDD |
distinct([numTasks])) |
对源RDD进行去重后返回一个新的RDD |
groupByKey([numTasks]) |
在一个(K,V)的RDD上调用,返回一个(K, Iterator[V])的RDD |
reduceByKey(func, [numTasks]) |
在一个(K,V)的RDD上调用,返回一个(K,V)的RDD,使用指定的reduce函数,将相同key的值聚合到一起,与groupByKey类似,reduce任务的个数可以通过第二个可选的参数来设置 |
aggregateByKey(zeroValue)(seqOp, combOp, [numTasks]) |
|
sortByKey([ascending], [numTasks]) |
在一个(K,V)的RDD上调用,K必须实现Ordered接口,返回一个按照key进行排序的(K,V)的RDD |
sortBy(func,[ascending], [numTasks]) |
与sortByKey类似,但是更灵活 |
join(otherDataset, [numTasks]) |
在类型为(K,V)和(K,W)的RDD上调用,返回一个相同key对应的所有元素对在一起的(K,(V,W))的RDD |
cogroup(otherDataset, [numTasks]) |
在类型为(K,V)和(K,W)的RDD上调用,返回一个(K,(Iterable<V>,Iterable<W>))类型的RDD |
cartesian(otherDataset) |
笛卡尔积 |
pipe(command, [envVars]) |
|
coalesce(numPartitions) |
|
repartition(numPartitions) |
|
repartitionAndSortWithinPartitions(partitioner) |
4.2:常用的Action如下所示:
动作 |
含义 |
reduce(func) |
通过func函数聚集RDD中的所有元素,这个功能必须是课交换且可并联的 |
collect() |
在驱动程序中,以数组的形式返回数据集的所有元素 |
count() |
返回RDD的元素个数 |
first() |
返回RDD的第一个元素(类似于take(1)) |
take(n) |
返回一个由数据集的前n个元素组成的数组 |
takeSample(withReplacement,num, [seed]) |
返回一个数组,该数组由从数据集中随机采样的num个元素组成,可以选择是否用随机数替换不足的部分,seed用于指定随机数生成器种子 |
takeOrdered(n, [ordering]) |
|
saveAsTextFile(path) |
将数据集的元素以textfile的形式保存到HDFS文件系统或者其他支持的文件系统,对于每个元素,Spark将会调用toString方法,将它装换为文件中的文本 |
saveAsSequenceFile(path) |
将数据集中的元素以Hadoop sequencefile的格式保存到指定的目录下,可以使HDFS或者其他Hadoop支持的文件系统。 |
saveAsObjectFile(path) |
|
countByKey() |
针对(K,V)类型的RDD,返回一个(K,Int)的map,表示每一个key对应的元素个数。 |
foreach(func) |
在数据集的每一个元素上,运行函数func进行更新。 |
5:WordCount中的RDD:
6:RDD的依赖关系:
RDD和它依赖的父RDD(s)的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency)。
6.1:窄依赖:窄依赖指的是每一个父RDD的Partition最多被子RDD的一个Partition使用。总结:窄依赖我们形象的比喻为独生子女。
、窄依赖,子RDD的每个分区依赖于常数个父分区(即与数据规模无关)。
2、输入输出一对一的算子,且结果RDD的分区结构不变,主要是map,flatMap。
3、输入输出一对一,但结果RDD的分区结构发生了变化,如union,coalesce。
4、从输入中选择部分袁术的算子。如filter,distinct,subtract,sample
6.2:宽依赖:宽依赖指的是多个子RDD的Partition会依赖同一个父RDD的Partition。总结:窄依赖我们形象的比喻为超生。
、宽依赖,子RDD的每个分区依赖于所有父RDD分区。
2、对单个RDD基于key进行重组和reduce,如groupByKey,reduceByKey。
3、对两个RDD基于key进行join和重组,如join。
6.3:Lineage:RDD只支持粗粒度转换,即在大量记录上执行的单个操作。将创建RDD的一系列Lineage(即血统)记录下来,以便恢复丢失的分区。RDD的Lineage会记录RDD的元数据信息和转换行为,当该RDD的部分分区数据丢失时,它可以根据这些信息来重新运算和恢复丢失的数据分区。
7:RDD的缓存:
Spark速度非常快的原因之一,就是在不同操作中可以在内存中持久化或缓存个数据集。当持久化某个RDD后,每一个节点都将把计算的分片结果保存在内存中,并在对此RDD或衍生出的RDD进行的其他动作中重用。这使得后续的动作变得更加迅速。RDD相关的持久化和缓存,是Spark最重要的特征之一。可以说,缓存是Spark构建迭代式算法和快速交互式查询的关键。
7.1:RDD缓存方式:
RDD通过persist方法或cache方法可以将前面的计算结果缓存,但是并不是这两个方法被调用时立即缓存,而是触发后面的action时,该RDD将会被缓存在计算节点的内存中,并供后面重用。
通过查看源码发现cache最终也是调用了persist方法,默认的存储级别都是仅在内存存储一份,Spark的存储级别还有好多种,存储级别在object StorageLevel中定义的。
缓存有可能丢失,或者存储存储于内存的数据由于内存不足而被删除,RDD的缓存容错机制保证了即使缓存丢失也能保证计算的正确执行。通过基于RDD的一系列转换,丢失的数据会被重算,由于RDD的各个Partition是相对独立的,因此只需要计算丢失的部分即可,并不需要重算全部Partition。
8:DAG的生成:
DAG(Directed Acyclic Graph)叫做有向无环图,原始的RDD通过一系列的转换就就形成了DAG,根据RDD之间的依赖关系的不同将DAG划分成不同的Stage,对于窄依赖,partition的转换处理在Stage中完成计算。对于宽依赖,由于有Shuffle的存在,只能在parent RDD处理完成后,才能开始接下来的计算,因此宽依赖是划分Stage的依据。
9、什么是spark Shuffle?
、the shuffle is Spark's mechanism for re-distributing data。
、那些操作会引起shuffle?
a、具有重新调整分区操作,eg:repartition,coalesce。
b、BeyKey eg:groupByKey,reduceByKey。
c、关联操作 eg:join,cogroup。