UVa 12093 Protecting Zonk (树形DP)

题意:给定一个有n个节点的无根树,有两种装置A和B,每种都有无限多个。在某个节点X使用A装置需要C1的花费,并且此时与节点X相连的边都被覆盖。在某个节点X使用B装置需要C2的花费,并且此时与节点X相连的边以及与X相连的点相连的边都被覆盖。求覆盖所有边的最小花费。

析:树形DP,这是一个比较难想的,

dp[i][0] 表示 在 i 为根的子树不安装,且其子树的边都覆盖,

dp[i][1] 表示 在 i 处安装装置A

dp[i][2] 表示 在 i 处安装装置B

dp[i][3] 表示 在 i 为根的子树不安装,对于子结点不作要求,但对孙结点是要覆盖的

状态转移方程,第二个不好转移,其他的都好说

dp[i][0] +=  min(dp[v][1], dp[v][2]);

dp[i][2] += min(min(dp[v][0], min(dp[v][1], dp[v][2])), dp[v][3]) + C2;

dp[i][3] += min(dp[v][0], min(dp[v][1], dp[v][2]));

对于dp[i][1] 有两种转移方式,第一种,在 i 处真正的安装装置A,那么就是

dp[i][0] += min(dp[v][1], dp[v][2]);

还有一种,那就是它的子结点至少有一个安装装置B,那么就相当于 i 结点安装了装置A。

dp[i][2] += min(min(dp[v][0], min(dp[v][1], dp[v][2])), dp[v][3])  + det。

其中det表示最小的一个值在其子结点中安装装置B的花费。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#include <list>
#include <assert.h>
#include <bitset>
#define debug() puts("++++");
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a, b, sizeof a)
#define sz size()
#define pu push_up
#define pd push_down
#define cl clear()
#define all 1,n,1
#define FOR(x,n) for(int i = (x); i < (n); ++i)
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std; typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 1e20;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 10000 + 10;
const int mod = 1000;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c){
return r > 0 && r <= n && c > 0 && c <= m;
}
int c1, c2; struct Edge{
int to, next;
};
Edge edge[maxn<<1];
int cnt, head[maxn];
int dp[maxn][4]; void addEdge(int u, int v){
edge[cnt].to = v;
edge[cnt].next = head[u];
head[u] = cnt++;
} void dfs(int u, int fa){
dp[u][0] = dp[u][3] = 0;;
dp[u][1] = c1;
dp[u][2] = c2;
int mmin = INF, sum = 0;
for(int i = head[u]; ~i; i = edge[i].next){
int v = edge[i].to;
if(v == fa) continue;
dfs(v, u);
dp[u][0] += min(dp[v][1], dp[v][2]);
int t = min(dp[v][0], min(dp[v][1], dp[v][2]));
dp[u][1] += t;
dp[u][2] += min(t, dp[v][3]);
dp[u][3] += t;
sum += t;
mmin = min(mmin, dp[v][2] - t);
}
sum += mmin;
dp[u][1] = min(dp[u][1], sum);
} int main(){
while(scanf("%d %d %d", &n, &c1, &c2) == 3 && n){
cnt = 0; ms(head, -1);
for(int i = 1; i < n; ++i){
int u, v;
scanf("%d %d", &u, &v);
addEdge(u, v);
addEdge(v, u);
}
dfs(1, -1);
printf("%d\n", min(dp[1][0], min(dp[1][1], dp[1][2])));
}
return 0;
}

  

上一篇:【AllJoyn专题】基于AllJoyn和Yeelink的传感器数据上传与指令下行的研究


下一篇:床建虚拟磁盘并写汇编代码 挂载至虚拟机中