题目链接:1484 - Alice and Bob's Trip
题意:BOB和ALICE这对狗男女在一颗树上走,BOB先走,BOB要尽量使得总路径权和大,ALICE要小,可是有个条件,就是路径权值总和必须在[L,R]之间,求终于这条路径的权值。
思路:树形dp,dp[u]表示在u结点的权值,往下dfs的时候顺带记录下到根节点的权值总和,然后假设dp[v] + w + sum 在[l,r]内,就是能够的,状态转移方程为
dp[u] = max{dp[v] + w }(bob) dp[u] = min{dp[u] + w} (alice)。所以假设是bob初始化为0,alice初始化为INF。
可是注意假设搜到叶子节点的时候,无论到谁dp[u]都出初始化为0,被这个坑了
还有就是HDU上这题用vector是过不了的,要用数组模拟的链表
代码:
#include <stdio.h>
#include <string.h>
#include <vector>
using namespace std;
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define INF 0x3f3f3f3f
const int N = 500005;
int n, l, r, dp[N], E, first[N], next[N];
struct Edge {
int u, v, w;
} edge[N]; inline void scanf_(int &num)//无负数
{
char in;
while((in=getchar()) > '9' || in<'0') ;
num=in-'0';
while(in=getchar(),in>='0'&&in<='9')
num*=10,num+=in-'0';
} void dfs(int u, int fa, int sum, int who) {
if (who && first[u] != -1) dp[u] = INF;
else dp[u] = 0;
for (int i = first[u]; i != -1; i = next[i]) {
int v = edge[i].v, w = edge[i].w;
if (v == fa) continue;
dfs(v, u, sum + w, 1 - who);
if (who == 0 && dp[v] + w + sum >= l && dp[v] + w + sum <= r)
dp[u] = max(dp[u], dp[v] + w);
if (who == 1 && dp[v] + w + sum >= l && dp[v] + w + sum <= r)
dp[u] = min(dp[u], dp[v] + w);
}
} void add(int u, int v, int w) {
edge[E].u = u; edge[E].v = v; edge[E].w = w;
next[E] = first[u];
first[u] = E++;
} int main() {
while (~scanf("%d%d%d", &n, &l, &r)) {
E = 0;
memset(first, -1, sizeof(first));
int u, v, w;
for (int i = 0; i < n - 1; i++) {
scanf_(u); scanf_(v); scanf_(w);
add(u, v, w);
}
dfs(0, -1, 0, 0);
if (dp[0] < l || dp[0] > r) printf("Oh, my god!\n");
else printf("%d\n", dp[0]); }
return 0;
}