从UIImage的矩阵变换看矩阵运算的原理

1.矩阵的基本知识:

struct CGAffineTransform

{
  CGFloat a, b, c, d;
  CGFloat tx, ty;
};

CGAffineTransform CGAffineTransformMake (CGFloat a,CGFloat b,CGFloat c,CGFloat d,CGFloat tx,CGFloat ty);

为了把二维图形的变化统一在一个坐标系里,引入了齐次坐标的概念,即把一个图形用一个三维矩阵表示,其中第三列总是(0,0,1),用来作为坐标系的标准。所以所有的变化都由前两列完成。

以上参数在矩阵中的表示为:

|a    b    0|

|c    d    0|

|tx   ty   1|

运算原理:原坐标设为(X,Y,1);

|a    b    0|

[X,Y,  1]      |c    d    0|     =     [aX + cY + tx   bX + dY + ty  1] ;

|tx    ty  1|

通过矩阵运算后的坐标[aX + cY + tx   bX + dY + ty  1],我们对比一下可知:

第一种:设a=d=1, b=c=0.  

[aX + cY + tx   bX + dY + ty  1] = [X  + tx  Y + ty  1];

可见,这个时候,坐标是按照向量(tx,ty)进行平移,其实这也就是函数

CGAffineTransform CGAffineMakeTranslation(CGFloat tx,CGFloat ty)的计算原理。

第二种:设b=c=tx=ty=0.  

[aX + cY + tx   bX + dY + ty  1] = [aX    dY   1];

可见,这个时候,坐标X按照a进行缩放,Y按照d进行缩放,a,d就是X,Y的比例系数,其实这也就是函数

CGAffineTransform CGAffineTransformMakeScale(CGFloat sx, CGFloat sy)的计算原理。a对应于sx,d对应于sy。

第三种:设tx=ty=0,a=cosɵ,b=sinɵ,c=-sinɵ,d=cosɵ。

[aX + cY + tx   bX + dY + ty  1] = [Xcosɵ - Ysinɵ    Xsinɵ + Ycosɵ  1] ;

可见,这个时候,ɵ就是旋转的角度,逆时针为正,顺时针为负。其实这也就是函数

CGAffineTransform CGAffineTransformMakeRotation(CGFloat angle)的计算原理。angle即ɵ的弧度表示。

2.利用上面的变换写一个UIImage矩阵变换的例子:

下面是一个关于image的矩阵运算的例子,无外乎是运用以上三种变换的组合,达到所定义的效果:

  1. //UIImageOrientation的定义,定义了如下几种变换
  2. typedef enum
  3. {
  4. UIImageOrientationUp,            // default orientation
  5. UIImageOrientationDown,          // 180 deg rotation
  6. UIImageOrientationLeft,          // 90 deg CCW
  7. UIImageOrientationRight,         // 90 deg CW
  8. UIImageOrientationUpMirrored,    // as above but image mirrored along other axis. horizontal flip
  9. UIImageOrientationDownMirrored,  // horizontal flip
  10. UIImageOrientationLeftMirrored,  // vertical flip
  11. UIImageOrientationRightMirrored, // vertical flip
  12. } UIImageOrientation;
  13. //按照UIImageOrientation的定义,利用矩阵自定义实现对应的变换;
  14. -(UIImage *)transformImage:(UIImage *)aImage
  15. {
  16. CGImageRef imgRef = aImage.CGImage;
  17. CGFloat width = CGImageGetWidth(imgRef);
  18. CGFloat height = CGImageGetHeight(imgRef);
  19. CGAffineTransform transform = CGAffineTransformIdentity;
  20. CGRect bounds = CGRectMake(0, 0, width, height);
  21. CGFloat scaleRatio = 1;
  22. CGFloat boundHeight;
  23. UIImageOrientation orient = aImage.imageOrientation;
  24. switch(UIImageOrientationLeftMirrored)
  25. {
  26. case UIImageOrientationUp:
  27. transform = CGAffineTransformIdentity;
  28. break;
  29. case UIImageOrientationUpMirrored:
  30. transform = CGAffineTransformMakeTranslation(width, 0.0);
  31. transform = CGAffineTransformScale(transform, -1.0, 1.0);
  32. break;
  33. case UIImageOrientationDown:
  34. transform = CGAffineTransformMakeTranslation(width, height);
  35. transform = CGAffineTransformRotate(transform, M_PI);
  36. break;
  37. case UIImageOrientationDownMirrored:
  38. transform = CGAffineTransformMakeTranslation(0.0, height);
  39. transform = CGAffineTransformScale(transform, 1.0, -1.0);
  40. break;
  41. case UIImageOrientationLeft:
  42. boundHeight = bounds.size.height;
  43. bounds.size.height = bounds.size.width;
  44. bounds.size.width = boundHeight;
  45. transform = CGAffineTransformMakeTranslation(0.0, width);
  46. transform = CGAffineTransformRotate(transform, 3.0 * M_PI / 2.0);
  47. break;
  48. case UIImageOrientationLeftMirrored:
  49. boundHeight = bounds.size.height;
  50. bounds.size.height = bounds.size.width;
  51. bounds.size.width = boundHeight;
  52. transform = CGAffineTransformMakeTranslation(height, width);
  53. transform = CGAffineTransformScale(transform, -1.0, 1.0);
  54. transform = CGAffineTransformRotate(transform, 3.0 * M_PI / 2.0);
  55. break;
  56. case UIImageOrientationRight: //EXIF = 8
  57. boundHeight = bounds.size.height;
  58. bounds.size.height = bounds.size.width;
  59. bounds.size.width = boundHeight;
  60. transform = CGAffineTransformMakeTranslation(height, 0.0);
  61. transform = CGAffineTransformRotate(transform, M_PI / 2.0);
  62. break;
  63. case UIImageOrientationRightMirrored:
  64. boundHeight = bounds.size.height;
  65. bounds.size.height = bounds.size.width;
  66. bounds.size.width = boundHeight;
  67. transform = CGAffineTransformMakeScale(-1.0, 1.0);
  68. transform = CGAffineTransformRotate(transform, M_PI / 2.0);
  69. break;
  70. default:
  71. [NSException raise:NSInternalInconsistencyException format:@"Invalid image orientation"];
  72. }
  73. UIGraphicsBeginImageContext(bounds.size);
  74. CGContextRef context = UIGraphicsGetCurrentContext();
  75. if (orient == UIImageOrientationRight || orient == UIImageOrientationLeft) {
  76. CGContextScaleCTM(context, -scaleRatio, scaleRatio);
  77. CGContextTranslateCTM(context, -height, 0);
  78. }
  79. else {
  80. CGContextScaleCTM(context, scaleRatio, -scaleRatio);
  81. CGContextTranslateCTM(context, 0, -height);
  82. }
  83. CGContextConcatCTM(context, transform);
  84. CGContextDrawImage(UIGraphicsGetCurrentContext(), CGRectMake(0, 0, width, height), imgRef);
  85. UIImage *imageCopy = UIGraphicsGetImageFromCurrentImageContext();
  86. UIGraphicsEndImageContext();
  87. return imageCopy;
  88. }

掌握矩阵运算的原理,对视图的矩阵操作便会得心应手,巧妙利用旋转,平移,缩放,组合起来达到你所想要的变换效果!

上一篇:javaWeb之使用servlet搭建服务器入门


下一篇:bat中rar压缩命令