android 休眠唤醒机制分析(一) — wake_lock【转】

本文转载自:https://blog.csdn.net/dragon101788/article/details/41984935

Android的休眠唤醒主要基于wake_lock机制,只要系统中存在任一有效的wake_lock,系统就不能进入深度休眠,但可以进行设备的浅度休眠操作。wake_lock一般在关闭lcd、tp但系统仍然需要正常运行的情况下使用,比如听歌、传输很大的文件等。本文主要分析driver层wake_lock的实现。

一、wake_lock 定义和接口

  1. enum {  
  2.     WAKE_LOCK_SUSPEND, // 阻止进入深度休眠模式  
  3.     WAKE_LOCK_IDLE,    // 阻止进入空闲模式  
  4.     WAKE_LOCK_TYPE_COUNT  
  5. };  
  6.   
  7. struct wake_lock {  
  8. #ifdef CONFIG_HAS_WAKELOCK  
  9.     struct list_head    link;     // 链表节点  
  10.     int                 flags;    // 标志  
  11.     const char         *name;     // 名称  
  12.     unsigned long       expires;  // 超时时间  
  13. #ifdef CONFIG_WAKELOCK_STAT  
  14.     struct {  
  15.         int             count;         // 使用计数  
  16.         int             expire_count;  // 超时计数  
  17.         int             wakeup_count;  // 唤醒计数  
  18.         ktime_t         total_time;    // 锁使用时间  
  19.         ktime_t         prevent_suspend_time;  // 锁阻止休眠的时间  
  20.         ktime_t         max_time;      // 锁使用时间最长的一次  
  21.         ktime_t         last_time;     // 锁上次操作时间  
  22.     } stat;  
  23. #endif  
  24. #endif  
  25. };  

可以看到wake_lock按功能分为休眠锁和空闲锁两种类型,用于阻止系统进入深度休眠模式或者空闲模式。wake_lock的主要部件有锁名称、链表节点、标志位、超时时间,另外还有一个内嵌的结构用于统计锁的使用信息。接下来我们看看wake_lock对外提供的操作接口:

1、内核空间接口

  1. void wake_lock_init(struct wake_lock *lock, int type, const char *name);  
  2. void wake_lock_destroy(struct wake_lock *lock);  
  3. void wake_lock(struct wake_lock *lock);  
  4. void wake_lock_timeout(struct wake_lock *lock, long timeout);  
  5. void wake_unlock(struct wake_lock *lock);  

其中wake_lock_init()用于初始化一个新锁,type参数指定了锁的类型;wake_lock_destroy()则注销一个锁;wake_lock()和wake_lock_timeout()用于将初始化完成的锁激活,使之成为有效的永久锁或者超时锁;wake_unlock()用于解锁使之成为无效锁。另外还有两个接口:

  1. int wake_lock_active(struct wake_lock *lock);  
  2. long has_wake_lock(int type);  

其中wake_lock_active()用于判断锁当前是否有效,如果有效则返回非0值;has_wake_lock()用于判断系统中是否还存在有效的type型锁,如果存在超时锁则返回最长的一个锁的超时时间,如果存在永久锁则返回-1,如果系统中不存在有效锁则返回0。

2、用户空间接口

wake_lock向用户空间提供了两个文件节点用于申请锁和解锁:

  1. // wack_lock文件的读函数,显示用户空间定义的有效锁  
  2. ssize_t wake_lock_show(  
  3.     struct kobject *kobj, struct kobj_attribute *attr, char *buf)  
  4. {  
  5.     char *s = buf;  
  6.     char *end = buf + PAGE_SIZE;  
  7.     struct rb_node *n;  
  8.     struct user_wake_lock *l;  
  9.   
  10.     mutex_lock(&tree_lock);  
  11.   
  12.     for (n = rb_first(&user_wake_locks); n != NULL; n = rb_next(n)) {  
  13.         l = rb_entry(n, struct user_wake_lock, node);  
  14.         if (wake_lock_active(&l->wake_lock))  
  15.             s += scnprintf(s, end - s, "%s ", l->name);  
  16.     }  
  17.     s += scnprintf(s, end - s, "\n");  
  18.   
  19.     mutex_unlock(&tree_lock);  
  20.     return (s - buf);  
  21. }  
  22.   
  23. // wack_lock文件的写函数,初始化并激活用户空间定义的锁  
  24. ssize_t wake_lock_store(  
  25.     struct kobject *kobj, struct kobj_attribute *attr,  
  26.     const char *buf, size_t n)  
  27. {  
  28.     long timeout;  
  29.     struct user_wake_lock *l;  
  30.   
  31.     mutex_lock(&tree_lock);  
  32.     l = lookup_wake_lock_name(buf, 1, &timeout);  
  33.     if (IS_ERR(l)) {  
  34.         n = PTR_ERR(l);  
  35.         goto bad_name;  
  36.     }  
  37.   
  38.     if (debug_mask & DEBUG_ACCESS)  
  39.         pr_info("wake_lock_store: %s, timeout %ld\n", l->name, timeout);  
  40.   
  41.     if (timeout)  
  42.         wake_lock_timeout(&l->wake_lock, timeout);  
  43.     else  
  44.         wake_lock(&l->wake_lock);  
  45. bad_name:  
  46.     mutex_unlock(&tree_lock);  
  47.     return n;  
  48. }  
  49.   
  50. // wack_unlock文件的读函数,显示用户空间的无效锁  
  51. ssize_t wake_unlock_show(  
  52.     struct kobject *kobj, struct kobj_attribute *attr, char *buf)  
  53. {  
  54.     char *s = buf;  
  55.     char *end = buf + PAGE_SIZE;  
  56.     struct rb_node *n;  
  57.     struct user_wake_lock *l;  
  58.   
  59.     mutex_lock(&tree_lock);  
  60.   
  61.     for (n = rb_first(&user_wake_locks); n != NULL; n = rb_next(n)) {  
  62.         l = rb_entry(n, struct user_wake_lock, node);  
  63.         if (!wake_lock_active(&l->wake_lock))  
  64.             s += scnprintf(s, end - s, "%s ", l->name);  
  65.     }  
  66.     s += scnprintf(s, end - s, "\n");  
  67.   
  68.     mutex_unlock(&tree_lock);  
  69.     return (s - buf);  
  70. }  
  71.   
  72. // wack_unlock文件的写函数,用于用户空间解锁  
  73. ssize_t wake_unlock_store(  
  74.     struct kobject *kobj, struct kobj_attribute *attr,  
  75.     const char *buf, size_t n)  
  76. {  
  77.     struct user_wake_lock *l;  
  78.   
  79.     mutex_lock(&tree_lock);  
  80.     l = lookup_wake_lock_name(buf, 0, NULL);  
  81.     if (IS_ERR(l)) {  
  82.         n = PTR_ERR(l);  
  83.         goto not_found;  
  84.     }  
  85.   
  86.     if (debug_mask & DEBUG_ACCESS)  
  87.         pr_info("wake_unlock_store: %s\n", l->name);  
  88.   
  89.     wake_unlock(&l->wake_lock);  
  90. not_found:  
  91.     mutex_unlock(&tree_lock);  
  92.     return n;  
  93. }  
  94.   
  95. power_attr(wake_lock);  
  96. power_attr(wake_unlock);  

这两个文件节点分别为"/sys/power/wake_lock"和"/sys/power/wake_unlock",应用程序可以根据HAL层的接口读写这两个节点。
二、wake_lock 实现
在linux/kernel/power/wakelock.c中我们可以看到wake_lock的实现代码,首先看看其定义的一些初始化信息:

  1. #define WAKE_LOCK_TYPE_MASK              (0x0f)     // 锁类型标志掩码  
  2. #define WAKE_LOCK_INITIALIZED            (1U << 8)  // 锁已经初始化标志  
  3. #define WAKE_LOCK_ACTIVE                 (1U << 9)  // 锁有效标志  
  4. #define WAKE_LOCK_AUTO_EXPIRE            (1U << 10) // 超时锁标志  
  5. #define WAKE_LOCK_PREVENTING_SUSPEND     (1U << 11) // 正在阻止休眠标志  
  6.   
  7. static DEFINE_SPINLOCK(list_lock);  // 读写锁链表的自旋锁  
  8. static LIST_HEAD(inactive_locks);   // 内核维护的无效锁链表  
  9. static struct list_head active_wake_locks[WAKE_LOCK_TYPE_COUNT];  // 有效锁链表  
  10. static int current_event_num;       // 休眠锁使用计数器  
  11. struct workqueue_struct *suspend_work_queue;  // 执行系统休眠的工作队列  
  12. struct workqueue_struct *sys_sync_work_queue; // 执行系统同步的工作队列  
  13. struct wake_lock main_wake_lock;              // 内核休眠锁  
  14. struct wake_lock sys_sync_wake_lock;          // 缓存同步锁  
  15. suspend_state_t requested_suspend_state = PM_SUSPEND_MEM;  // 系统休眠状态  
  16. static struct wake_lock unknown_wakeup;       // 未知锁  

在后面的分析中我们会看到这些变量的具体用途。

1、wake_lock系统初始化

  1. static int __init wakelocks_init(void)  
  2. {  
  3.     int ret;  
  4.     int i;  
  5.     // 初始化有效锁链表,内核维护了2个有效锁链表  
  6.     // WAKE_LOCK_SUSPEND 用于阻止进入深度休眠模式  
  7.     // WAKE_LOCK_IDLE    用于阻止进入空闲模式  
  8.     for (i = 0; i < ARRAY_SIZE(active_wake_locks); i++)  
  9.         INIT_LIST_HEAD(&active_wake_locks[i]);  
  10.   
  11. #ifdef CONFIG_WAKELOCK_STAT  
  12.     // 初始化deleted_wake_locks  
  13.     wake_lock_init(&deleted_wake_locks, WAKE_LOCK_SUSPEND,  
  14.             "deleted_wake_locks");  
  15. #endif  
  16.     // 初始化内核休眠锁  
  17.     wake_lock_init(&main_wake_lock, WAKE_LOCK_SUSPEND, "main");  
  18.     // 初始化同步锁  
  19.     wake_lock_init(&sys_sync_wake_lock, WAKE_LOCK_SUSPEND, "sys_sync");  
  20.     // 激活内核休眠锁  
  21.     wake_lock(&main_wake_lock);  
  22.     // 初始化未知锁  
  23.     wake_lock_init(&unknown_wakeup, WAKE_LOCK_SUSPEND, "unknown_wakeups");  
  24.   
  25.     // 注册power_device,power_driver  
  26.     ret = platform_device_register(&power_device);  
  27.     if (ret) {  
  28.         pr_err("wakelocks_init: platform_device_register failed\n");  
  29.         goto err_platform_device_register;  
  30.     }  
  31.     ret = platform_driver_register(&power_driver);  
  32.     if (ret) {  
  33.         pr_err("wakelocks_init: platform_driver_register failed\n");  
  34.         goto err_platform_driver_register;  
  35.     }  
  36.     // 创建fs_sync内核进程  
  37.     sys_sync_work_queue = create_singlethread_workqueue("fs_sync");  
  38.     if (sys_sync_work_queue == NULL) {  
  39.         pr_err ("fs_sync workqueue create failed.\n");  
  40.     }  
  41.     // 创建suspend内核进程  
  42.     suspend_work_queue = create_singlethread_workqueue("suspend");  
  43.     if (suspend_work_queue == NULL) {  
  44.         ret = -ENOMEM;  
  45.         goto err_suspend_work_queue;  
  46.     }  
  47.   
  48. #ifdef CONFIG_WAKELOCK_STAT  
  49.     // 在proc下创建wakelocks文件  
  50.     proc_create("wakelocks", S_IRUGO, NULL, &wakelock_stats_fops);  
  51. #endif  
  52.   
  53.     return 0;  
  54.   
  55. err_suspend_work_queue:  
  56.     platform_driver_unregister(&power_driver);  
  57. err_platform_driver_register:  
  58.     platform_device_unregister(&power_device);  
  59. err_platform_device_register:  
  60.     wake_lock_destroy(&unknown_wakeup);  
  61.     wake_lock_destroy(&main_wake_lock);  
  62. #ifdef CONFIG_WAKELOCK_STAT  
  63.     wake_lock_destroy(&deleted_wake_locks);  
  64. #endif  
  65.     return ret;  
  66. }  
  67. core_initcall(wakelocks_init);  

可以看到内核通过core_initcall调用了wake_lock系统的初始化函数,函数首先初始化了两个有效锁的链表,用于管理系统中的有效锁;接下来初始化了deleted_wake_locks用于处理统计信息,main_wake_lock用于锁定内核(系统启动时会激活这个锁,深度休眠时需要释放这个锁),sys_sync_wake_lock用于浅度休眠阶段同步缓存时阻止内核进入深度休眠,unknown_wakeup用于唤醒时延迟0.5s进入下一次可能的深度休眠;还注册了一个platform_device用于深度休眠阶段检测是否存在有效锁;后面创建了内核进程fs_sync用于浅度休眠阶段同步缓存,内核进程suspend用于进行浅度休眠和深度休眠;还在/proc下面创建了wakelocks节点用于显示wake_lock的统计信息。

2、wake_lock初始化

  1. void wake_lock_init(struct wake_lock *lock, int type, const char *name)  
  2. {  
  3.     unsigned long irqflags = 0;  
  4.     // 初始化名称  
  5.     if (name)  
  6.         lock->name = name;  
  7.     BUG_ON(!lock->name);  
  8.   
  9.     if (debug_mask & DEBUG_WAKE_LOCK)  
  10.         pr_info("wake_lock_init name=%s\n", lock->name);  
  11. #ifdef CONFIG_WAKELOCK_STAT  
  12.     lock->stat.count = 0;  
  13.     lock->stat.expire_count = 0;  
  14.     lock->stat.wakeup_count = 0;  
  15.     lock->stat.total_time = ktime_set(0, 0);  
  16.     lock->stat.prevent_suspend_time = ktime_set(0, 0);  
  17.     lock->stat.max_time = ktime_set(0, 0);  
  18.     lock->stat.last_time = ktime_set(0, 0);  
  19. #endif  
  20.     // 初始化flag  
  21.     lock->flags = (type & WAKE_LOCK_TYPE_MASK) | WAKE_LOCK_INITIALIZED;  
  22.     // 初始化链表节点  
  23.     INIT_LIST_HEAD(&lock->link);  
  24.     spin_lock_irqsave(&list_lock, irqflags);  
  25.     // 将锁加入无效锁链表  
  26.     list_add(&lock->link, &inactive_locks);  
  27.     spin_unlock_irqrestore(&list_lock, irqflags);  
  28. }  
  29. EXPORT_SYMBOL(wake_lock_init);  

其中参数lock为被初始化对象,type代表锁的类型,name表示锁的名称, 函数主要初始化锁的名称并设置 WAKE_LOCK_INITIALIZED 标志位,并将锁加入无效锁链表inactive_locks,当需要使用锁的时候通过wake_lock()或者wake_lock_timeout()激活该锁:

  1. // 根据参数激活锁  
  2. static void wake_lock_internal(  
  3.     struct wake_lock *lock, long timeout, int has_timeout)  
  4. {  
  5.     int type;  
  6.     unsigned long irqflags;  
  7.     long expire_in;  
  8.   
  9.     spin_lock_irqsave(&list_lock, irqflags);  
  10.     // 获取锁的类型  
  11.     type = lock->flags & WAKE_LOCK_TYPE_MASK;  
  12.     BUG_ON(type >= WAKE_LOCK_TYPE_COUNT);  
  13.     BUG_ON(!(lock->flags & WAKE_LOCK_INITIALIZED));  
  14. #ifdef CONFIG_WAKELOCK_STAT  
  15.     if (type == WAKE_LOCK_SUSPEND && wait_for_wakeup) {  
  16.         if (debug_mask & DEBUG_WAKEUP)  
  17.             pr_info("wakeup wake lock: %s\n", lock->name);  
  18.         wait_for_wakeup = 0;  
  19.         lock->stat.wakeup_count++;  
  20.     }  
  21.     if ((lock->flags & WAKE_LOCK_AUTO_EXPIRE) &&  
  22.         (long)(lock->expires - jiffies) <= 0) {  
  23.         wake_unlock_stat_locked(lock, 0);  
  24.         lock->stat.last_time = ktime_get();  
  25.     }  
  26. #endif  
  27.     // 设置锁有效的标志位  
  28.     if (!(lock->flags & WAKE_LOCK_ACTIVE)) {  
  29.         lock->flags |= WAKE_LOCK_ACTIVE;  
  30. #ifdef CONFIG_WAKELOCK_STAT  
  31.         lock->stat.last_time = ktime_get();  
  32. #endif  
  33.     }  
  34.     // 将锁从无效锁链表中删除  
  35.     list_del(&lock->link);  
  36.     // 如果是超时锁  
  37.     if (has_timeout) {  
  38.         if (debug_mask & DEBUG_WAKE_LOCK)  
  39.             pr_info("wake_lock: %s, type %d, timeout %ld.%03lu\n",  
  40.                 lock->name, type, timeout / HZ,  
  41.                 (timeout % HZ) * MSEC_PER_SEC / HZ);  
  42.         // 设置锁超时时间,以当前jiffies为基准  
  43.         lock->expires = jiffies + timeout;  
  44.         // 设置锁的超时锁标志  
  45.         lock->flags |= WAKE_LOCK_AUTO_EXPIRE;  
  46.         // 将锁加入有效锁链表  
  47.         list_add_tail(&lock->link, &active_wake_locks[type]);  
  48.     } else {  // 如果是永久锁  
  49.         if (debug_mask & DEBUG_WAKE_LOCK)  
  50.             pr_info("wake_lock: %s, type %d\n", lock->name, type);  
  51.         // 设置超时时间为极限  
  52.         lock->expires = LONG_MAX;  
  53.         // 清除超时锁标志  
  54.         lock->flags &= ~WAKE_LOCK_AUTO_EXPIRE;  
  55.         // 将锁加入有效锁链表  
  56.         list_add(&lock->link, &active_wake_locks[type]);  
  57.     }  
  58.     // 如果是休眠锁  
  59.     if (type == WAKE_LOCK_SUSPEND) {  
  60.         current_event_num++;  // 休眠锁使用计数器加1  
  61. #ifdef CONFIG_WAKELOCK_STAT  
  62.         // 如果是内核休眠锁  
  63.         if (lock == &main_wake_lock)  
  64.             update_sleep_wait_stats_locked(1);  
  65.         // 如果内核休眠锁无效  
  66.         else if (!wake_lock_active(&main_wake_lock))  
  67.             update_sleep_wait_stats_locked(0);  
  68. #endif  
  69.         // 如果是超时锁  
  70.         if (has_timeout)  
  71.             expire_in = has_wake_lock_locked(type);  
  72.         else  
  73.             expire_in = -1;  
  74.         // 当前存在有效超时锁,并且最长的一个到期时间间隔为expire_in  
  75.         if (expire_in > 0) {  
  76.             if (debug_mask & DEBUG_EXPIRE)  
  77.                 pr_info("wake_lock: %s, start expire timer, "  
  78.                     "%ld\n", lock->name, expire_in);  
  79.             mod_timer(&expire_timer, jiffies + expire_in);  
  80.         } else {  // 如果有永久锁或者无有效锁  
  81.             if (del_timer(&expire_timer))  
  82.                 if (debug_mask & DEBUG_EXPIRE)  
  83.                     pr_info("wake_lock: %s, stop expire timer\n",  
  84.                         lock->name);  
  85.             if (expire_in == 0)  // 无有效锁  
  86.                 queue_work(suspend_work_queue, &suspend_work);  
  87.         }  
  88.     }  
  89.     spin_unlock_irqrestore(&list_lock, irqflags);  
  90. }  
  91.   
  92. // 激活永久锁  
  93. void wake_lock(struct wake_lock *lock)  
  94. {  
  95.     wake_lock_internal(lock, 0, 0);  
  96. }  
  97. EXPORT_SYMBOL(wake_lock);  
  98.   
  99. // 激活超时锁  
  100. void wake_lock_timeout(struct wake_lock *lock, long timeout)  
  101. {  
  102.     wake_lock_internal(lock, timeout, 1);  
  103. }  
  104. EXPORT_SYMBOL(wake_lock_timeout);  

可以看到激活过程都是通过调用wake_lock_internal()完成的,该函数首先完成一些统计信息的初始化,设置 WAKE_LOCK_ACTIVE 标志位并将锁从无效锁链表中移除;然后根据是否是超时锁设置 WAKE_LOCK_AUTO_EXPIRE 标志位,并设置超时锁的超时时间,再将锁加入有效锁链表;最后再根据锁的类型判断是否为休眠锁,如果是休眠锁且为超时锁则通过has_wake_lock_locked()获取系统中存在的超时锁中时间最长的到期时间值,并以此值设置expire_timer,has_wake_lock_locked()返回0则表示系统中不存在有效锁则启动suspend进程开始进入深度休眠状态。

3、expire_timer

  1. static void expire_wake_locks(unsigned long data)  
  2. {  
  3.     long has_lock;  
  4.     unsigned long irqflags;  
  5.     if (debug_mask & DEBUG_EXPIRE)  
  6.         pr_info("expire_wake_locks: start\n");  
  7.     spin_lock_irqsave(&list_lock, irqflags);  
  8.     // 打印当前的有效锁  
  9.     if (debug_mask & DEBUG_SUSPEND)  
  10.         print_active_locks(WAKE_LOCK_SUSPEND);  
  11.     // 检测系统是否持有休眠锁  
  12.     has_lock = has_wake_lock_locked(WAKE_LOCK_SUSPEND);  
  13.     if (debug_mask & DEBUG_EXPIRE)  
  14.         pr_info("expire_wake_locks: done, has_lock %ld\n", has_lock);  
  15.     // 如果系统当前没有持有有效地休眠锁  
  16.     if (has_lock == 0)  
  17.         // 则启动深度休眠工作队列  
  18.         queue_work(suspend_work_queue, &suspend_work);  
  19.     spin_unlock_irqrestore(&list_lock, irqflags);  
  20. }  
  21. // 定义timer,运行函数为expire_wake_locks  
  22. static DEFINE_TIMER(expire_timer, expire_wake_locks, 0, 0);  

该timer会在多个地方用到,在激活锁的函数中注册用于超时锁到期后检测系统的有效锁状态,如果系统不存在有效锁了则启动suspend进程。
4、suspend_work

  1. static void suspend(struct work_struct *work)  
  2. {  
  3.     int ret;  
  4.     int entry_event_num;  
  5.   
  6.     // 判断系统是否还持有有效锁,如果有则直接返回  
  7.     if (has_wake_lock(WAKE_LOCK_SUSPEND)) {  
  8.         if (debug_mask & DEBUG_SUSPEND)  
  9.             pr_info("suspend: abort suspend\n");  
  10.         return;  
  11.     }  
  12.   
  13.     // 记录函数进入时休眠锁的使用次数  
  14.     entry_event_num = current_event_num;  
  15.     sys_sync();  // 将缓存中的数据写入磁盘  
  16.     if (debug_mask & DEBUG_SUSPEND)  
  17.         pr_info("suspend: enter suspend\n");  
  18.     // 开始深度休眠  
  19.     ret = pm_suspend(requested_suspend_state);  
  20.     // 退出深度休眠,打印信息  
  21.     if (debug_mask & DEBUG_EXIT_SUSPEND) {  
  22.         struct timespec ts;  
  23.         struct rtc_time tm;  
  24.         getnstimeofday(&ts);  
  25.         rtc_time_to_tm(ts.tv_sec, &tm);  
  26.         pr_info("suspend: exit suspend, ret = %d "  
  27.             "(%d-%02d-%02d %02d:%02d:%02d.%09lu UTC)\n", ret,  
  28.             tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,  
  29.             tm.tm_hour, tm.tm_min, tm.tm_sec, ts.tv_nsec);  
  30.     }  
  31.     // 如果深度休眠前和深度休眠后锁的使用次数一致,即唤醒过程中没有激活新的锁  
  32.     if (current_event_num == entry_event_num) {  
  33.         if (debug_mask & DEBUG_SUSPEND)  
  34.             pr_info("suspend: pm_suspend returned with no event\n");  
  35.         // 激活unknown_wakeup,0.5s超时  
  36.         wake_lock_timeout(&unknown_wakeup, HZ / 2);  
  37.     }  
  38. }  
  39. // 声明工作队列,运行函数为suspend  
  40. static DECLARE_WORK(suspend_work, suspend);  

声明工作队列用于内核深度休眠,可以看到一个正常的休眠流程会三次调用sys_sync()用于同步缓存(之前一次在浅度休眠,之后一次在深度休眠),然后调用pm_suspend()开始执行深度休眠流程。
5、has_wake_lock

  1. // 移除过期超时锁  
  2. static void expire_wake_lock(struct wake_lock *lock)  
  3. {  
  4. #ifdef CONFIG_WAKELOCK_STAT  
  5.     wake_unlock_stat_locked(lock, 1);  
  6. #endif  
  7.     // 清除锁有效和超时锁标志  
  8.     lock->flags &= ~(WAKE_LOCK_ACTIVE | WAKE_LOCK_AUTO_EXPIRE);  
  9.     // 从当前链表中删除  
  10.     list_del(&lock->link);  
  11.     // 加入无效锁链表  
  12.     list_add(&lock->link, &inactive_locks);  
  13.     if (debug_mask & (DEBUG_WAKE_LOCK | DEBUG_EXPIRE))  
  14.         pr_info("expired wake lock %s\n", lock->name);  
  15. }  
  16.   
  17. // 打印有效锁信息,调用者需持有list_lock  
  18. static void print_active_locks(int type)  
  19. {  
  20.     struct wake_lock *lock;  
  21.     bool print_expired = true;  
  22.   
  23.     BUG_ON(type >= WAKE_LOCK_TYPE_COUNT);  
  24.     // 遍历有效锁链表  
  25.     list_for_each_entry(lock, &active_wake_locks[type], link) {  
  26.         // 如果是超时锁  
  27.         if (lock->flags & WAKE_LOCK_AUTO_EXPIRE) {  
  28.             // 计算超时剩余时间  
  29.             long timeout = lock->expires - jiffies;  
  30.             if (timeout > 0)  
  31.                 pr_info("active wake lock %s, time left %ld\n",  
  32.                     lock->name, timeout);  
  33.             else if (print_expired)  
  34.                 pr_info("wake lock %s, expired\n", lock->name);  
  35.         } else {  // 如果不是超时锁  
  36.             pr_info("active wake lock %s\n", lock->name);  
  37.             if (!debug_mask & DEBUG_EXPIRE)  
  38.                 print_expired = false;  
  39.         }  
  40.     }  
  41. }  
  42.   
  43. static long has_wake_lock_locked(int type)  
  44. {  
  45.     struct wake_lock *lock, *n;  
  46.     long max_timeout = 0;  
  47.   
  48.     BUG_ON(type >= WAKE_LOCK_TYPE_COUNT);  
  49.     // 遍历有效锁链表  
  50.     list_for_each_entry_safe(lock, n, &active_wake_locks[type], link) {  
  51.         // 如果是超时锁  
  52.         if (lock->flags & WAKE_LOCK_AUTO_EXPIRE) {  
  53.             // 计算超时剩余时间  
  54.             long timeout = lock->expires - jiffies;  
  55.             // 如果锁已经过期  
  56.             if (timeout <= 0)  
  57.                 // 移除过期锁  
  58.                 expire_wake_lock(lock);  
  59.             else if (timeout > max_timeout)  // 如果锁没有过期  
  60.                 // 得到最长的一个超时时间  
  61.                 max_timeout = timeout;  
  62.         } else // 如果不是超时锁则返回-1  
  63.             return -1;  
  64.     }  
  65.     return max_timeout;  
  66. }  
  67.   
  68. // 判断系统是否还持有有效锁  
  69. long has_wake_lock(int type)  
  70. {  
  71.     long ret;  
  72.     unsigned long irqflags;  
  73.     spin_lock_irqsave(&list_lock, irqflags);  
  74.     // 开始判断流程  
  75.     ret = has_wake_lock_locked(type);  
  76.     // 如果还有休眠锁有效则打印状态信息  
  77.     if (ret && (debug_mask & DEBUG_SUSPEND) && type == WAKE_LOCK_SUSPEND)  
  78.         print_active_locks(type);  
  79.     spin_unlock_irqrestore(&list_lock, irqflags);  
  80.     return ret;  
  81. }  

has_wake_lock()为系统判断当前是否存在指定类型有效锁的接口,在has_wake_lock_locked()中遍历有效锁链表,返回前面我们已经说明的值;并且打印所有有效锁的状态信息。
6、wake_unlock

  1. void wake_unlock(struct wake_lock *lock)  
  2. {  
  3.     int type;  
  4.     unsigned long irqflags;  
  5.     spin_lock_irqsave(&list_lock, irqflags);  
  6.     type = lock->flags & WAKE_LOCK_TYPE_MASK;  
  7. #ifdef CONFIG_WAKELOCK_STAT  
  8.     // 更新锁的状态  
  9.     wake_unlock_stat_locked(lock, 0);  
  10. #endif  
  11.     if (debug_mask & DEBUG_WAKE_LOCK)  
  12.         pr_info("wake_unlock: %s\n", lock->name);  
  13.     // 清楚有效锁和超时锁标志  
  14.     lock->flags &= ~(WAKE_LOCK_ACTIVE | WAKE_LOCK_AUTO_EXPIRE);  
  15.     // 将锁从有效锁链表中移除加入无效锁链表  
  16.     list_del(&lock->link);  
  17.     list_add(&lock->link, &inactive_locks);  
  18.     // 如果是休眠锁  
  19.     if (type == WAKE_LOCK_SUSPEND) {  
  20.         // 判断系统当前是否还持有锁  
  21.         long has_lock = has_wake_lock_locked(type);  
  22.         // 如果还持有锁,设置timer到超时时间点触发  
  23.         if (has_lock > 0) {  
  24.             if (debug_mask & DEBUG_EXPIRE)  
  25.                 pr_info("wake_unlock: %s, start expire timer, "  
  26.                     "%ld\n", lock->name, has_lock);  
  27.             mod_timer(&expire_timer, jiffies + has_lock);  
  28.         } else {  
  29.             if (del_timer(&expire_timer))  // 删除timer  
  30.                 if (debug_mask & DEBUG_EXPIRE)  
  31.                     pr_info("wake_unlock: %s, stop expire "  
  32.                         "timer\n", lock->name);  
  33.             if (has_lock == 0)  // 启动深度休眠工作队列  
  34.                 queue_work(suspend_work_queue, &suspend_work);  
  35.         }  
  36.         // 如果是内核锁  
  37.         if (lock == &main_wake_lock) {  
  38.             if (debug_mask & DEBUG_SUSPEND)  
  39.                 // 打印当前有效锁信息  
  40.                 print_active_locks(WAKE_LOCK_SUSPEND);  
  41. #ifdef CONFIG_WAKELOCK_STAT  
  42.             update_sleep_wait_stats_locked(0);  
  43. #endif  
  44.         }  
  45.     }  
  46.     spin_unlock_irqrestore(&list_lock, irqflags);  
  47. }  
  48. EXPORT_SYMBOL(wake_unlock);  

该函数用于释放一个锁,首先将锁从有效锁链表中移除并加入无效锁链表,并判断系统是否还持有有效锁,如果没有则进入深度休眠流程。

7、wake_lock_active

  1. // 判断锁是否有效  
  2. int wake_lock_active(struct wake_lock *lock)  
  3. {  
  4.     return !!(lock->flags & WAKE_LOCK_ACTIVE);  
  5. }  
  6. EXPORT_SYMBOL(wake_lock_active);  

8、wake_lock_destroy

  1. void wake_lock_destroy(struct wake_lock *lock)  
  2. {  
  3.     unsigned long irqflags;  
  4.     if (debug_mask & DEBUG_WAKE_LOCK)  
  5.         pr_info("wake_lock_destroy name=%s\n", lock->name);  
  6.     spin_lock_irqsave(&list_lock, irqflags);  
  7.     // 清除已经初始化的标志  
  8.     lock->flags &= ~WAKE_LOCK_INITIALIZED;  
  9. #ifdef CONFIG_WAKELOCK_STAT  
  10.     if (lock->stat.count) {  
  11.         deleted_wake_locks.stat.count += lock->stat.count;  
  12.         deleted_wake_locks.stat.expire_count += lock->stat.expire_count;  
  13.         deleted_wake_locks.stat.total_time =  
  14.             ktime_add(deleted_wake_locks.stat.total_time,  
  15.                   lock->stat.total_time);  
  16.         deleted_wake_locks.stat.prevent_suspend_time =  
  17.             ktime_add(deleted_wake_locks.stat.prevent_suspend_time,  
  18.                   lock->stat.prevent_suspend_time);  
  19.         deleted_wake_locks.stat.max_time =  
  20.             ktime_add(deleted_wake_locks.stat.max_time,  
  21.                   lock->stat.max_time);  
  22.     }  
  23. #endif  
  24.     // 从当前链表中删除  
  25.     list_del(&lock->link);  
  26.     spin_unlock_irqrestore(&list_lock, irqflags);  
  27. }  
  28. EXPORT_SYMBOL(wake_lock_destroy);  

该函数用于注销wake_lock,首先清除 WAKE_LOCK_INITIALIZED 标志位,然后更新统计信息,最后将锁从链表中删除。

9、proc节点

  1. // 获取锁的剩余超时时间,通过*expire_time传递  
  2. int get_expired_time(struct wake_lock *lock, ktime_t *expire_time)  
  3. {  
  4.     struct timespec ts;  
  5.     struct timespec kt;  
  6.     struct timespec tomono;  
  7.     struct timespec delta;  
  8.     unsigned long seq;  
  9.     long timeout;  
  10.   
  11.     // 如果不是超时锁则直接返回  
  12.     if (!(lock->flags & WAKE_LOCK_AUTO_EXPIRE))  
  13.         return 0;  
  14.   
  15.     do {  
  16.         seq = read_seqbegin(&xtime_lock);  
  17.         // 计算超时时间点与当前时间的差值  
  18.         timeout = lock->expires - jiffies;  
  19.         // 如果时间没有到期,返回0  
  20.         if (timeout > 0)  
  21.             return 0;  
  22.         // 获取当前时间  
  23.         kt = current_kernel_time();  
  24.         tomono = wall_to_monotonic;  
  25.     } while (read_seqretry(&xtime_lock, seq));  
  26.     // 时间格式转换  
  27.     jiffies_to_timespec(-timeout, &delta);  
  28.     // 设置timespec的成员  
  29.     set_normalized_timespec(&ts, kt.tv_sec + tomono.tv_sec - delta.tv_sec,  
  30.                 kt.tv_nsec + tomono.tv_nsec - delta.tv_nsec);  
  31.     // 返回ts值  
  32.     *expire_time = timespec_to_ktime(ts);  
  33.     return 1;  
  34. }  
  35.   
  36. // 打印出锁的状态信息  
  37. static int print_lock_stat(struct seq_file *m, struct wake_lock *lock)  
  38. {  
  39.     int lock_count = lock->stat.count;  
  40.     int expire_count = lock->stat.expire_count;  
  41.     ktime_t active_time = ktime_set(0, 0);  
  42.     ktime_t total_time = lock->stat.total_time;  
  43.     ktime_t max_time = lock->stat.max_time;  
  44.   
  45.     ktime_t prevent_suspend_time = lock->stat.prevent_suspend_time;  
  46.     // 如果锁有效  
  47.     if (lock->flags & WAKE_LOCK_ACTIVE) {  
  48.         ktime_t now, add_time;  
  49.         // 获取超时剩余时间  
  50.         int expired = get_expired_time(lock, &now);  
  51.         if (!expired)  
  52.             now = ktime_get();  
  53.         // 计算当前时间和上次操作时间的差值  
  54.         add_time = ktime_sub(now, lock->stat.last_time);  
  55.         lock_count++;  // 使用计数加1  
  56.         if (!expired)  // 如果没有到期  
  57.             active_time = add_time;  
  58.         else  // 锁已经到期  
  59.             expire_count++;  // 超时计数加1  
  60.         total_time = ktime_add(total_time, add_time);  // 锁使用时间增加  
  61.         if (lock->flags & WAKE_LOCK_PREVENTING_SUSPEND)  
  62.             prevent_suspend_time = ktime_add(prevent_suspend_time,  
  63.                     ktime_sub(now, last_sleep_time_update));  
  64.         if (add_time.tv64 > max_time.tv64)  
  65.             max_time = add_time;  
  66.     }  
  67.   
  68.     return seq_printf(m,  
  69.              "\"%s\"\t%d\t%d\t%d\t%lld\t%lld\t%lld\t%lld\t%lld\n",  
  70.              lock->name, lock_count, expire_count,  
  71.              lock->stat.wakeup_count, ktime_to_ns(active_time),  
  72.              ktime_to_ns(total_time),  
  73.              ktime_to_ns(prevent_suspend_time), ktime_to_ns(max_time),  
  74.              ktime_to_ns(lock->stat.last_time));  
  75. }  
  76.   
  77. // 打印锁状态  
  78. static int wakelock_stats_show(struct seq_file *m, void *unused)  
  79. {  
  80.     unsigned long irqflags;  
  81.     struct wake_lock *lock;  
  82.     int ret;  
  83.     int type;  
  84.   
  85.     spin_lock_irqsave(&list_lock, irqflags);  
  86.     // 输出菜单  
  87.     ret = seq_puts(m, "name\tcount\texpire_count\twake_count\tactive_since"  
  88.             "\ttotal_time\tsleep_time\tmax_time\tlast_change\n");  
  89.     // 遍历无效锁链表并打印锁的状态信息  
  90.     list_for_each_entry(lock, &inactive_locks, link)  
  91.         ret = print_lock_stat(m, lock);  
  92.     // 遍历有效锁链表并打印锁的状态信息  
  93.     for (type = 0; type < WAKE_LOCK_TYPE_COUNT; type++) {  
  94.         list_for_each_entry(lock, &active_wake_locks[type], link)  
  95.             ret = print_lock_stat(m, lock);  
  96.     }  
  97.     spin_unlock_irqrestore(&list_lock, irqflags);  
  98.     return 0;  
  99. }  
  100.   
  101. // proc文件打开函数,调用show函数显示当前所有的锁信息  
  102. static int wakelock_stats_open(struct inode *inode, struct file *file)  
  103. {  
  104.     return single_open(file, wakelock_stats_show, NULL);  
  105. }  
  106.   
  107. // proc文件系统操作函数  
  108. static const struct file_operations wakelock_stats_fops = {  
  109.     .owner = THIS_MODULE,  
  110.     .open = wakelock_stats_open,  
  111.     .read = seq_read,  
  112.     .llseek = seq_lseek,  
  113.     .release = single_release,  
  114. };  

以上是proc节点的操作接口,在wakelocks_init中注册。

 

总结:通过以上分析我们可以看到启动深度休眠流程有四个可能的地方,分别为expire_timer、wake_lock、wake_lock_timeout、wake_unlock,其中expire_timer和wake_unlock最常见。

android 休眠唤醒机制分析(一) — wake_lock【转】

上一篇:Web和移动开发的未来


下一篇:【Udacity并行计算课程笔记】- Lesson 4 Fundamental GPU Algorithms (Applications of Sort and Scan)