android 休眠唤醒机制分析(二) — early_suspend

本文转自:http://blog.csdn.net/g_salamander/article/details/7982170

early_suspend是Android休眠流程的第一阶段即浅度休眠,不会受到wake_lock的阻止,一般用于关闭lcd、tp等设备为运行的应用节约电能。Android的PowerManagerService会根据用户的操作情况调整电源状态,如果需要休眠则会调用到HAL层的set_screen_state()接口,在set_screen_state()中会向/sys/power/state节点写入"mem"值让驱动层开始进入休眠流程。

一、休眠唤醒机制及其用户空间接口

Linux系统支持如下休眠唤醒等级

  1. const char *const pm_states[PM_SUSPEND_MAX] = {
  2. #ifdef CONFIG_EARLYSUSPEND
  3. [PM_SUSPEND_ON]     = "on",
  4. #endif
  5. [PM_SUSPEND_STANDBY]    = "standby",
  6. [PM_SUSPEND_MEM]    = "mem",
  7. };

但在Android中一般只支持"on"和"mem",其中"on"为唤醒设备,"mem"为休眠设备。/sys/power/state节点的读写操作如下:

  1. static ssize_t state_show(struct kobject *kobj, struct kobj_attribute *attr,
  2. char *buf)
  3. {
  4. char *s = buf;
  5. #ifdef CONFIG_SUSPEND
  6. int i;
  7. for (i = 0; i < PM_SUSPEND_MAX; i++) {
  8. if (pm_states[i] && valid_state(i))
  9. s += sprintf(s,"%s ", pm_states[i]);  // 打印系统支持的休眠等级
  10. }
  11. #endif
  12. #ifdef CONFIG_HIBERNATION
  13. s += sprintf(s, "%s\n", "disk");
  14. #else
  15. if (s != buf)
  16. /* convert the last space to a newline */
  17. *(s-1) = '\n';
  18. #endif
  19. return (s - buf);
  20. }
  21. static ssize_t state_store(struct kobject *kobj, struct kobj_attribute *attr,
  22. const char *buf, size_t n)
  23. {
  24. #ifdef CONFIG_SUSPEND
  25. #ifdef CONFIG_EARLYSUSPEND
  26. suspend_state_t state = PM_SUSPEND_ON;
  27. #else
  28. suspend_state_t state = PM_SUSPEND_STANDBY;
  29. #endif
  30. const char * const *s;
  31. #endif
  32. char *p;
  33. int len;
  34. int error = -EINVAL;
  35. p = memchr(buf, '\n', n);
  36. len = p ? p - buf : n;
  37. /* First, check if we are requested to hibernate */
  38. if (len == 4 && !strncmp(buf, "disk", len)) {
  39. error = hibernate();
  40. goto Exit;
  41. }
  42. #ifdef CONFIG_SUSPEND
  43. for (s = &pm_states[state]; state < PM_SUSPEND_MAX; s++, state++) {
  44. if (*s && len == strlen(*s) && !strncmp(buf, *s, len))
  45. break;
  46. }
  47. if (state < PM_SUSPEND_MAX && *s)
  48. #ifdef CONFIG_EARLYSUSPEND
  49. if (state == PM_SUSPEND_ON || valid_state(state)) {
  50. error = 0;
  51. request_suspend_state(state);  // 请求进入android的休眠流程
  52. }
  53. #else
  54. error = enter_state(state);  // linux的标准休眠流程
  55. #endif
  56. #endif
  57. Exit:
  58. return error ? error : n;
  59. }
  60. power_attr(state);

其中state_show()为节点的读函数,主要打印出系统支持的休眠等级;state_store()为节点的写函数,根据参数请求休眠或者唤醒流程。节点的创建代码如下:

  1. static struct attribute * g[] = {
  2. &state_attr.attr,        // state节点
  3. #ifdef CONFIG_PM_TRACE
  4. &pm_trace_attr.attr,
  5. #endif
  6. #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_PM_DEBUG)
  7. &pm_test_attr.attr,      // pm_test节点
  8. #endif
  9. #ifdef CONFIG_USER_WAKELOCK
  10. &wake_lock_attr.attr,    // wake_lock节点
  11. &wake_unlock_attr.attr,  // wake_unlock节点
  12. #endif
  13. NULL,
  14. };
  15. static struct attribute_group attr_group = {
  16. .attrs = g,
  17. };
  18. static int __init pm_init(void)
  19. {
  20. int error = pm_start_workqueue();
  21. if (error)
  22. return error;
  23. power_kobj = kobject_create_and_add("power", NULL);  // 创建power节点
  24. if (!power_kobj)
  25. return -ENOMEM;
  26. return sysfs_create_group(power_kobj, &attr_group);  // 创建一组属性节点
  27. }
  28. core_initcall(pm_init);

二、early_suspend 实现

1、early_suspend 定义、接口及其用法

  1. enum {
  2. EARLY_SUSPEND_LEVEL_BLANK_SCREEN = 50,
  3. EARLY_SUSPEND_LEVEL_STOP_DRAWING = 100,
  4. EARLY_SUSPEND_LEVEL_DISABLE_FB = 150,
  5. };
  6. struct early_suspend {
  7. #ifdef CONFIG_HAS_EARLYSUSPEND
  8. struct list_head link;  // 链表节点
  9. int level;              // 优先等级
  10. void (*suspend)(struct early_suspend *h);
  11. void (*resume)(struct early_suspend *h);
  12. #endif
  13. };

可以看到early_suspend由两个函数指针、链表节点、优先等级组成;内核默认定义了3个优先等级,在suspend的时候先执行优先等级低的handler,在resume的时候则先执行等级高的handler,用户可以定义自己的优先等级;early_suspend向内核空间提供了2个接口用于注册和注销handler:

  1. void register_early_suspend(struct early_suspend *handler);
  2. void unregister_early_suspend(struct early_suspend *handler);

其中register_early_suspend()用于注册,unregister_early_suspend用于注销;一般early_suspend的使用方式如下:

  1. ts->earlysuspend.suspend = sitronix_i2c_suspend_early;
  2. ts->earlysuspend.resume = sitronix_i2c_resume_late;
  3. ts->earlysuspend.level = EARLY_SUSPEND_LEVEL_BLANK_SCREEN;
  4. register_early_suspend(&ts->earlysuspend);

设置好suspend和resume接口,定义优先等级,然后注册结构即可。

2、初始化信息

我们看一下early_suspend需要用到的一些数据:

  1. static DEFINE_MUTEX(early_suspend_lock);
  2. static LIST_HEAD(early_suspend_handlers);  // 初始化浅度休眠链表
  3. // 声明3个工作队列用于同步、浅度休眠和唤醒
  4. static void early_sys_sync(struct work_struct *work);
  5. static void early_suspend(struct work_struct *work);
  6. static void late_resume(struct work_struct *work);
  7. static DECLARE_WORK(early_sys_sync_work,early_sys_sync);
  8. static DECLARE_WORK(early_suspend_work, early_suspend);
  9. static DECLARE_WORK(late_resume_work, late_resume);
  10. static DEFINE_SPINLOCK(state_lock);
  11. enum {
  12. SUSPEND_REQUESTED = 0x1,  // 当前正在请求浅度休眠
  13. SUSPENDED = 0x2,          // 浅度休眠完成
  14. SUSPEND_REQUESTED_AND_SUSPENDED = SUSPEND_REQUESTED | SUSPENDED,
  15. };
  16. static int state;

初始化了一个链表early_suspend_handlers用于管理early_suspend,还定义读写链表用到的互斥体;另外还声明了3个工作队列,分别用于缓存同步、浅度休眠和唤醒;还声明了early_suspend操作的3个状态。
3、register_early_suspend 和 unregister_early_suspend

  1. void register_early_suspend(struct early_suspend *handler)
  2. {
  3. struct list_head *pos;
  4. mutex_lock(&early_suspend_lock);
  5. // 遍历浅度休眠链表
  6. list_for_each(pos, &early_suspend_handlers) {
  7. struct early_suspend *e;
  8. e = list_entry(pos, struct early_suspend, link);
  9. // 判断当前节点的优先等级是否大于handler的优先等级
  10. // 以此决定handler在链表中的顺序
  11. if (e->level > handler->level)
  12. break;
  13. }
  14. // 将handler加入当前节点之前,优先等级越低越靠前
  15. list_add_tail(&handler->link, pos);
  16. if ((state & SUSPENDED) && handler->suspend)
  17. handler->suspend(handler);
  18. mutex_unlock(&early_suspend_lock);
  19. }
  20. EXPORT_SYMBOL(register_early_suspend);

注册的流程比较简单,首先遍历链表,依次比较每个节点的优先等级,如果遇到优先等级比新节点优先等级高则跳出,然后将新节点加入优先等级较高的节点前面,这样就确保了链表是优先等级低在前高在后的顺序;在将节点加入链表后查看当前状态是否为浅度休眠完成状态,如果是则执行handler的suspend函数。

  1. void unregister_early_suspend(struct early_suspend *handler)
  2. {
  3. mutex_lock(&early_suspend_lock);
  4. list_del(&handler->link);
  5. mutex_unlock(&early_suspend_lock);
  6. }
  7. EXPORT_SYMBOL(unregister_early_suspend);

注销流程则只是将节点从链表中移除。
4、request_suspend_state

前面我们看到用户空间在写/sys/power/state节点的时候会执行request_suspend_state()函数,该函数代码如下:

  1. void request_suspend_state(suspend_state_t new_state)
  2. {
  3. unsigned long irqflags;
  4. int old_sleep;
  5. spin_lock_irqsave(&state_lock, irqflags);
  6. old_sleep = state & SUSPEND_REQUESTED;
  7. // 打印当前状态
  8. if (debug_mask & DEBUG_USER_STATE) {
  9. struct timespec ts;
  10. struct rtc_time tm;
  11. getnstimeofday(&ts);
  12. rtc_time_to_tm(ts.tv_sec, &tm);
  13. pr_info("request_suspend_state: %s (%d->%d) at %lld "
  14. "(%d-%02d-%02d %02d:%02d:%02d.%09lu UTC)\n",
  15. new_state != PM_SUSPEND_ON ? "sleep" : "wakeup",
  16. requested_suspend_state, new_state,
  17. ktime_to_ns(ktime_get()),
  18. tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
  19. tm.tm_hour, tm.tm_min, tm.tm_sec, ts.tv_nsec);
  20. }
  21. // 如果新状态是休眠状态
  22. if (!old_sleep && new_state != PM_SUSPEND_ON) {
  23. state |= SUSPEND_REQUESTED;
  24. pr_info("sys_sync_work_queue early_sys_sync_work.\n");
  25. // 执行缓存同步与浅度休眠的工作队列
  26. queue_work(sys_sync_work_queue, &early_sys_sync_work);
  27. queue_work(suspend_work_queue, &early_suspend_work);
  28. } else if (old_sleep && new_state == PM_SUSPEND_ON) {
  29. // 如果新状态是唤醒状态
  30. state &= ~SUSPEND_REQUESTED;
  31. // 激活内核锁
  32. wake_lock(&main_wake_lock);
  33. // 执行浅度唤醒的工作队列
  34. queue_work(suspend_work_queue, &late_resume_work);
  35. }
  36. // 更新全局状态
  37. requested_suspend_state = new_state;
  38. spin_unlock_irqrestore(&state_lock, irqflags);
  39. }

函数首先打印出当前状态变化的log,然后判断新状态,如果是休眠状态则置位SUSPEND_REQUESTED标志,然后将同步缓存、浅度休眠工作队列加入相应的内核线程执行;如果新状态是唤醒则首先将main_wake_lock激活,然后再将浅度唤醒工作队列加入内核线程执行;最后更新全局状态变量,因为提供了一个内核空间接口用于获取当前休眠唤醒状态:

  1. // 返回系统状态值
  2. suspend_state_t get_suspend_state(void)
  3. {
  4. return requested_suspend_state;
  5. }

5、early_suspend_work、late_resume_work 和 early_sys_sync

  1. static void early_suspend(struct work_struct *work)
  2. {
  3. struct early_suspend *pos;
  4. unsigned long irqflags;
  5. int abort = 0;
  6. mutex_lock(&early_suspend_lock);
  7. spin_lock_irqsave(&state_lock, irqflags);
  8. if (state == SUSPEND_REQUESTED)  // 判断当前状态是否在请求浅度休眠
  9. state |= SUSPENDED;      // 如果是则置位SUSPENDED
  10. else
  11. abort = 1;
  12. spin_unlock_irqrestore(&state_lock, irqflags);
  13. if (abort) {  // 取消early_suspend
  14. if (debug_mask & DEBUG_SUSPEND)
  15. pr_info("early_suspend: abort, state %d\n", state);
  16. mutex_unlock(&early_suspend_lock);
  17. goto abort;
  18. }
  19. if (debug_mask & DEBUG_SUSPEND)
  20. pr_info("early_suspend: call handlers\n");
  21. // 遍历浅度休眠链表并执行其中所有suspend函数
  22. // 执行顺序根据优先等级而定,等级越低越先执行
  23. list_for_each_entry(pos, &early_suspend_handlers, link) {
  24. if (pos->suspend != NULL)
  25. pos->suspend(pos);
  26. }
  27. mutex_unlock(&early_suspend_lock);
  28. if (debug_mask & DEBUG_SUSPEND)
  29. pr_info("early_suspend: sync\n");
  30. /* Remove sys_sync from early_suspend, and use work queue to complete sys_sync */
  31. //sys_sync();
  32. abort:
  33. spin_lock_irqsave(&state_lock, irqflags);
  34. if (state == SUSPEND_REQUESTED_AND_SUSPENDED)
  35. wake_unlock(&main_wake_lock);
  36. spin_unlock_irqrestore(&state_lock, irqflags);
  37. }

在suspend流程中首先判断当前状态是否为SUSPEND_REQUESTED,如果是则置位SUSPENDED标志,如果不是则取消suspend流程;然后遍历浅度休眠链表,从链表头部到尾部依次调用各节点的suspend()函数,执行完后判断当前状态是否为SUSPEND_REQUESTED_AND_SUSPENDED,如果是则释放main_wake_lock,当前系统中如果只存在main_wake_lock这个有效锁,则会在wake_unlock()里面启动深度休眠线程,如果还有其他其他wake_lock则保持当前状态。

  1. static void late_resume(struct work_struct *work)
  2. {
  3. struct early_suspend *pos;
  4. unsigned long irqflags;
  5. int abort = 0;
  6. mutex_lock(&early_suspend_lock);
  7. spin_lock_irqsave(&state_lock, irqflags);
  8. if (state == SUSPENDED)  // 清除浅度休眠完成标志
  9. state &= ~SUSPENDED;
  10. else
  11. abort = 1;
  12. spin_unlock_irqrestore(&state_lock, irqflags);
  13. if (abort) {
  14. if (debug_mask & DEBUG_SUSPEND)
  15. pr_info("late_resume: abort, state %d\n", state);
  16. goto abort;
  17. }
  18. if (debug_mask & DEBUG_SUSPEND)
  19. pr_info("late_resume: call handlers\n");
  20. // 反向遍历浅度休眠链表并执行其中所有resume函数
  21. // 执行顺序根据优先等级而定,等级越高越先执行
  22. list_for_each_entry_reverse(pos, &early_suspend_handlers, link)
  23. if (pos->resume != NULL)
  24. pos->resume(pos);
  25. if (debug_mask & DEBUG_SUSPEND)
  26. pr_info("late_resume: done\n");
  27. abort:
  28. mutex_unlock(&early_suspend_lock);
  29. }

在resume流程中同样首先判断当前状态是否为SUSPENDED,如果是则清除SUSPENDED标志,然后反向遍历浅度休眠链表,按照优先等级从高到低的顺序执行节点的resume()函数。

上一篇:Postfix+Amavisd-new+Spamassassin+ClamAV整合安装


下一篇:TC358775XBG:MIPI DSI转双路LVDS芯片简介