统计所有路径的边权乘积的乘积,不难想到点分治求解。
边权颜色比例在\([\frac{1}{2},2]\)之间,等价于\(2B \geq R , 2R \geq B\)(\(R,B\)表示红色和黑色的边的条数)
所以我们可以在统计的时候,先把所有可能的路径全部乘进答案,然后除掉满足\(2B < R\)或者\(2R < B\)的路径的乘积。显然对于一条路径,这两个条件至多满足一个。
对于两条路径,它们红色、黑色的边数分别为\(B_1,R_1\)和\(B_2,R_2\),那么需要统计的就是\(R_1 - 2B_1 > 2B_2 - R_2\)或者\(B_1 - 2R_1 > 2R_2 - B_2\)的路径的信息。可以使用树状数组维护。
#include<iostream>
#include<cstdio>
//This code is written by Itst
using namespace std;
inline int read(){
int a = 0;
char c = getchar();
while(!isdigit(c))
c = getchar();
while(isdigit(c)){
a = a * 10 + c - 48;
c = getchar();
}
return a;
}
#define PII pair < int , int >
#define st first
#define nd second
const int MAXN = 1e5 + 7 , MOD = 1e9 + 7;
inline int poww(long long a , int b){
int times = 1;
while(b){
if(b & 1) times = times * a % MOD;
a = a * a % MOD;
b >>= 1;
}
return times;
}
struct Edge{int end , upEd , w , col;}Ed[MAXN << 1];
int head[MAXN] , N , nowSz , minSz , minInd , sum , ans , cnt , cntEd;
bool vis[MAXN];
struct BIT{
#define lowbit(x) ((x) & -(x))
int BIT0[MAXN << 2] , BIT1[MAXN << 2];
BIT(){fill(BIT0 , BIT0 + (MAXN << 2) , 1);}
void add(int pos , int w , int tp){
pos += 2 * N + 1;
if(tp == -1) w = poww(w , MOD - 2);
while(pos <= (N + 1) << 2){
BIT0[pos] = 1ll * BIT0[pos] * w % MOD;
BIT1[pos] += tp;
pos += lowbit(pos);
}
}
PII get(int pos){
pos += 2 * N + 1;
int tms = 1 , sum = 0;
while(pos){
tms = 1ll * tms * BIT0[pos] % MOD;
sum += BIT1[pos];
pos -= lowbit(pos);
}
return PII(tms , sum);
}
}BIT1 , BIT2;
inline void addEd(int a , int b , int c , int d){
Ed[++cntEd] = (Edge){b , head[a] , c , d};
head[a] = cntEd;
}
void getSz(int x){
vis[x] = 1; ++nowSz;
for(int i = head[x] ; i ; i = Ed[i].upEd)
if(!vis[Ed[i].end]) getSz(Ed[i].end);
vis[x] = 0;
}
int getRt(int x){
vis[x] = 1;
int sz = 1 , maxSz = 0;
for(int i = head[x] ; i ; i = Ed[i].upEd)
if(!vis[Ed[i].end]){
int t = getRt(Ed[i].end);
sz += t; maxSz = max(maxSz , t);
}
maxSz = max(maxSz , nowSz - sz);
if(minSz > maxSz){
minSz = maxSz;
minInd = x;
}
vis[x] = 0;
return sz;
}
void addNd(int x , int w , int colR , int colB , int tp){
sum = 1ll * sum * w % MOD; ++cnt;
BIT1.add(2 * colR - colB , w , tp);
BIT2.add(2 * colB - colR , w , tp);
vis[x] = 1;
for(int i = head[x] ; i ; i = Ed[i].upEd)
if(!vis[Ed[i].end])
addNd(Ed[i].end , 1ll * w * Ed[i].w % MOD , colR + Ed[i].col , colB + !Ed[i].col , tp);
vis[x] = 0;
}
void qryNd(int x , int w , int colR , int colB){
if(2 * colB >= colR && 2 * colR >= colB)
ans = 1ll * ans * w % MOD;
ans = 1ll * ans * sum % MOD * poww(w , cnt) % MOD;
PII p = BIT1.get(colB - 2 * colR - 1) , q = BIT2.get(colR - 2 * colB - 1);
ans = 1ll * ans * poww(1ll * p.st * q.st % MOD * poww(w , p.nd + q.nd) % MOD , MOD - 2) % MOD;
vis[x] = 1;
for(int i = head[x] ; i ; i = Ed[i].upEd)
if(!vis[Ed[i].end])
qryNd(Ed[i].end , 1ll * w * Ed[i].w % MOD , colR + Ed[i].col , colB + !Ed[i].col);
vis[x] = 0;
}
void solve(int x){
nowSz = cnt = 0; sum = 1; minSz = 1e9;
getSz(x); getRt(x); x = minInd;
vis[x] = 1;
for(int i = head[x] ; i ; i = Ed[i].upEd)
if(!vis[Ed[i].end]){
qryNd(Ed[i].end , Ed[i].w , Ed[i].col , !Ed[i].col);
addNd(Ed[i].end , Ed[i].w , Ed[i].col , !Ed[i].col , 1);
}
for(int i = head[x] ; i ; i = Ed[i].upEd)
if(!vis[Ed[i].end])
addNd(Ed[i].end , Ed[i].w , Ed[i].col , !Ed[i].col , -1);
for(int i = head[x] ; i ; i = Ed[i].upEd)
if(!vis[Ed[i].end])
solve(Ed[i].end);
}
int main(){
#ifndef ONLINE_JUDGE
freopen("in","r",stdin);
//freopen("out","w",stdout);
#endif
N = read();
for(int i = 1 ; i < N ; ++i){
int a = read() , b = read() , w = read() , col = read();
addEd(a , b , w , col); addEd(b , a , w , col);
}
ans = 1;
solve(1);
cout << ans;
return 0;
}