Skia路径绘制代码分析
路径绘制尽管使用频率相对于图像绘制、文本绘制低,但却是非常重要的一个基本特性。所有不规则图形(椭圆、圆角矩形、三角形、简单的文字),最后都避不开路径绘制。而且,若自己实现一个2D引擎,这块内容是很具有参考意义的,用OpenGL的话,图像采样等都很少关注了,对对坐标就好。但菱角、圆弧、曲线等如何绘制仍然是一个难题,这时就可以参考Skia中drawPath的实现。
由于涉及较多的图形学知识,本章就不讲相关公式了,只讲讲基本的流程。
一、SkPath类
在之前的图像绘制并没有介绍SkBitmap,因为SkBitmap相对而言比较容易理解,网上文章也多。但这次的SkPath不同,研究它怎么用是需要一点精力的,因此在这里先做介绍。
1、SkPath结构
去除成员函数之后,我们看到SkPath包括这几个成员,注释中补充了说明:
class SK_API SkPath { //SkPath中的主要内容,SkAutoTUnref是自解引用,之所以这么设计,是为了复制SkPath时,省去份量较多的点复制(只复制引用)。 //由一系列线段组成 SkAutoTUnref<SkPathRef> fPathRef; int fLastMoveToIndex; uint8_t fFillType;//如下四种类型之一 /*enum FillType { kWinding_FillType,//绘制所有线段包围成的区域 kEvenOdd_FillType,//绘制被所有线段包围奇数次的区域) kInverseWinding_FillType,//kWinding_FillType取反,即绘制不在该区域的点 kInverseEvenOdd_FillType//第二种type取反 }*/ mutable uint8_t fConvexity;//凹凸性,临时计算 mutable uint8_t fDirection;//方向,顺时针/逆时针,临时计算 #ifdef SK_BUILD_FOR_ANDROID const SkPath* fSourcePath;//Hwui中使用,暂不关注 #endif };
关于 fFillType中 kWinding_FillType和 kEvenOdd_FillType的区别,可看SkPath::contains。这是判断点是否在不规则几何体内的经典代码(),很有参考意义。
SkPathRef的内容如下:
class SkPathRef { private: mutable SkRect fBounds;//边界,临时计算 uint8_t fSegmentMask;//表示这个Path含有哪些种类的形状 mutable uint8_t fBoundsIsDirty;//缓存fBounds使用,表示 fBounds是否需要重新计算 mutable SkBool8 fIsFinite; // only meaningful if bounds are valid mutable SkBool8 fIsOval; /*skia不使用stl库而采用的一套容器方案,具体不细说,可看下 SkPath::Iter 的实现*/ SkPoint* fPoints; // points to begining of the allocation uint8_t* fVerbs; // points just past the end of the allocation (verbs grow backwards) int fVerbCnt; int fPointCnt; size_t fFreeSpace; // redundant but saves computation SkTDArray<SkScalar> fConicWeights; mutable uint32_t fGenerationID; };
2、SkPath的主要类型:
kMove_Verb:表示需要移动起点
kLine_Verb:直线
kQuad_Verb:二次曲线
kConic_Verb:圆锥曲线
kCubic_Verb:三次曲线
kClose_Verb:表闭合到某点
kDone_Verb:表结束
3、drawPath使用实例
#include "SkPath.h" #include "SkCanvas.h" #include "SkBitmap.h" int main() { SkBitmap dst; dst.allocN32Pixels(1000, 1000); SkCanvas c(dst); SkPath path; /*一个三角形*/ path.moveTo(300,0); path.lineTo(400,100); path.lineTo(200,100); path.close(); /*椭圆*/ SkRect oval; oval.set(0, 0, 500, 600); path.addOval(oval); c.drawPath(path); return 1; }
二、drawPath流程
1、基本流程
2、填充算法说明
我们跟进最重要的函数 sk_fill_path,如下为代码:
void sk_fill_path(const SkPath& path, const SkIRect* clipRect, SkBlitter* blitter, int start_y, int stop_y, int shiftEdgesUp, const SkRegion& clipRgn) { SkASSERT(&path && blitter); SkEdgeBuilder builder; int count = builder.build(path, clipRect, shiftEdgesUp); SkEdge** list = builder.edgeList(); if (count < 2) { if (path.isInverseFillType()) { /* * Since we are in inverse-fill, our caller has already drawn above * our top (start_y) and will draw below our bottom (stop_y). Thus * we need to restrict our drawing to the intersection of the clip * and those two limits. */ SkIRect rect = clipRgn.getBounds(); if (rect.fTop < start_y) { rect.fTop = start_y; } if (rect.fBottom > stop_y) { rect.fBottom = stop_y; } if (!rect.isEmpty()) { blitter->blitRect(rect.fLeft << shiftEdgesUp, rect.fTop << shiftEdgesUp, rect.width() << shiftEdgesUp, rect.height() << shiftEdgesUp); } } return; } SkEdge headEdge, tailEdge, *last; // this returns the first and last edge after they're sorted into a dlink list SkEdge* edge = sort_edges(list, count, &last); headEdge.fPrev = NULL; headEdge.fNext = edge; headEdge.fFirstY = kEDGE_HEAD_Y; headEdge.fX = SK_MinS32; edge->fPrev = &headEdge; tailEdge.fPrev = last; tailEdge.fNext = NULL; tailEdge.fFirstY = kEDGE_TAIL_Y; last->fNext = &tailEdge; // now edge is the head of the sorted linklist start_y <<= shiftEdgesUp; stop_y <<= shiftEdgesUp; if (clipRect && start_y < clipRect->fTop) { start_y = clipRect->fTop; } if (clipRect && stop_y > clipRect->fBottom) { stop_y = clipRect->fBottom; } InverseBlitter ib; PrePostProc proc = NULL; if (path.isInverseFillType()) { ib.setBlitter(blitter, clipRgn.getBounds(), shiftEdgesUp); blitter = &ib; proc = PrePostInverseBlitterProc; } if (path.isConvex() && (NULL == proc)) { walk_convex_edges(&headEdge, path.getFillType(), blitter, start_y, stop_y, NULL); } else { walk_edges(&headEdge, path.getFillType(), blitter, start_y, stop_y, proc); } }
不考虑 Inverse 的情况,主要就是两步:
(1)生成一系列边:SkEdge
(2)遍历渲染各边所围出来的区域
凸集的渲染比较简单,因为可以保证,任意两条边+闭合线所围成区域一定需要渲染:
(1)取初始的两条边,分别为:左和右。
(2)渲染左右边+闭合边所围成的区域(一般为三角,当两边平行时取矩形)
(3)迭代刷新左右两边(如果是曲线需要刷新多次)
static void walk_convex_edges(SkEdge* prevHead, SkPath::FillType, SkBlitter* blitter, int start_y, int stop_y, PrePostProc proc) { validate_sort(prevHead->fNext); SkEdge* leftE = prevHead->fNext; SkEdge* riteE = leftE->fNext; SkEdge* currE = riteE->fNext; #if 0 int local_top = leftE->fFirstY; SkASSERT(local_top == riteE->fFirstY); #else // our edge choppers for curves can result in the initial edges // not lining up, so we take the max. int local_top = SkMax32(leftE->fFirstY, riteE->fFirstY); #endif SkASSERT(local_top >= start_y); for (;;) { SkASSERT(leftE->fFirstY <= stop_y); SkASSERT(riteE->fFirstY <= stop_y); if (leftE->fX > riteE->fX || (leftE->fX == riteE->fX && leftE->fDX > riteE->fDX)) { SkTSwap(leftE, riteE); } int local_bot = SkMin32(leftE->fLastY, riteE->fLastY); local_bot = SkMin32(local_bot, stop_y - 1); SkASSERT(local_top <= local_bot); SkFixed left = leftE->fX; SkFixed dLeft = leftE->fDX; SkFixed rite = riteE->fX; SkFixed dRite = riteE->fDX; int count = local_bot - local_top; SkASSERT(count >= 0); if (0 == (dLeft | dRite)) { int L = SkFixedRoundToInt(left); int R = SkFixedRoundToInt(rite); if (L < R) { count += 1; blitter->blitRect(L, local_top, R - L, count); left += count * dLeft; rite += count * dRite; } local_top = local_bot + 1; } else { do { int L = SkFixedRoundToInt(left); int R = SkFixedRoundToInt(rite); if (L < R) { blitter->blitH(L, local_top, R - L); } left += dLeft; rite += dRite; local_top += 1; } while (--count >= 0); } leftE->fX = left; riteE->fX = rite; if (update_edge(leftE, local_bot)) { if (currE->fFirstY >= stop_y) { break; } leftE = currE; currE = currE->fNext; } if (update_edge(riteE, local_bot)) { if (currE->fFirstY >= stop_y) { break; } riteE = currE; currE = currE->fNext; } SkASSERT(leftE); SkASSERT(riteE); // check our bottom clip SkASSERT(local_top == local_bot + 1); if (local_top >= stop_y) { break; } } }
凹集或者判断不了凹凸性就比较复杂,需要一条线一条线去渲染,每次渲染还得判断奇偶性:
代码如下,不分析了:
static void walk_edges(SkEdge* prevHead, SkPath::FillType fillType, SkBlitter* blitter, int start_y, int stop_y, PrePostProc proc) { validate_sort(prevHead->fNext); int curr_y = start_y; // returns 1 for evenodd, -1 for winding, regardless of inverse-ness int windingMask = (fillType & 1) ? 1 : -1; for (;;) { int w = 0; int left SK_INIT_TO_AVOID_WARNING; bool in_interval = false; SkEdge* currE = prevHead->fNext; SkFixed prevX = prevHead->fX; validate_edges_for_y(currE, curr_y); if (proc) { proc(blitter, curr_y, PREPOST_START); // pre-proc } while (currE->fFirstY <= curr_y) { SkASSERT(currE->fLastY >= curr_y); int x = SkFixedRoundToInt(currE->fX); w += currE->fWinding; if ((w & windingMask) == 0) { // we finished an interval SkASSERT(in_interval); int width = x - left; SkASSERT(width >= 0); if (width) blitter->blitH(left, curr_y, width); in_interval = false; } else if (!in_interval) { left = x; in_interval = true; } SkEdge* next = currE->fNext; SkFixed newX; if (currE->fLastY == curr_y) { // are we done with this edge? if (currE->fCurveCount < 0) { if (((SkCubicEdge*)currE)->updateCubic()) { SkASSERT(currE->fFirstY == curr_y + 1); newX = currE->fX; goto NEXT_X; } } else if (currE->fCurveCount > 0) { if (((SkQuadraticEdge*)currE)->updateQuadratic()) { newX = currE->fX; goto NEXT_X; } } remove_edge(currE); } else { SkASSERT(currE->fLastY > curr_y); newX = currE->fX + currE->fDX; currE->fX = newX; NEXT_X: if (newX < prevX) { // ripple currE backwards until it is x-sorted backward_insert_edge_based_on_x(currE SkPARAM(curr_y)); } else { prevX = newX; } } currE = next; SkASSERT(currE); } if (proc) { proc(blitter, curr_y, PREPOST_END); // post-proc } curr_y += 1; if (curr_y >= stop_y) { break; } // now currE points to the first edge with a Yint larger than curr_y insert_new_edges(currE, curr_y); } }
3、描线流程
个人认为较简单,就不介绍了。
三、总结
drawPath是绘制所有不规则形体的函数,带入Bitmap的Shader,可以制作不规则形体的图片。对于凸集,Skia的渲染主要也是切成三角片后渲染,和OpenGL类似。而对于凹集,则是扫描线了。渲染的实现和绘制图片一样,构建Blitter,调用Blitter的blit函数族渲染。