javascript 大数值数据运算

javascript数字运算结果不准确:

1、浮点型数字进行运算时,基本四则运算结果都可能不准确,一般是把浮点型数据转换为整型运算,然后在还原处理。

这种情况下可以用一些常用转换方法计算,如下:

 1 /**
 2  * 加法运算
 3  */
 4 function numAdd(num1, num2) {
 5     var baseNum, baseNum1, baseNum2;
 6     try {
 7         baseNum1 = num1.toString().split(".")[1].length;
 8     } catch (e) {
 9         baseNum1 = 0;
10     }
11     try {
12         baseNum2 = num2.toString().split(".")[1].length;
13     } catch (e) {
14         baseNum2 = 0;
15     }
16     baseNum = Math.pow(10, Math.max(baseNum1, baseNum2));
17     return (num1 * baseNum + num2 * baseNum) / baseNum;
18 };
19 
20 /**
21  * 减法运算
22  */
23 function numSub(num1, num2) {
24     var baseNum, baseNum1, baseNum2;
25     var precision;
26     //精度    
27     try {
28         baseNum1 = num1.toString().split(".")[1].length;
29     } catch (e) {
30         baseNum1 = 0;
31     }
32     try {
33         baseNum2 = num2.toString().split(".")[1].length;
34     } catch (e) {
35         baseNum2 = 0;
36     }
37     baseNum = Math.pow(10, Math.max(baseNum1, baseNum2));
38     precision = (baseNum1 >= baseNum2) ? baseNum1 : baseNum2;
39     return ((num1 * baseNum - num2 * baseNum) / baseNum).toFixed(precision);
40 }
41 
42 /**
43  * 乘法运算
44  */
45 function numMulti(num1, num2) {
46     var baseNum = 0;
47     try {
48         baseNum += num1.toString().split(".")[1].length;
49     } catch (e) {
50     }
51     try {
52         baseNum += num2.toString().split(".")[1].length;
53     } catch (e) {
54     }
55     return Number(num1.toString().replace(".", ""))
56             * Number(num2.toString().replace(".", "")) / Math.pow(10, baseNum);
57 };
58 
59 
60 /**
61  * 除法運算
62  */
63 function numDiv(num1, num2) {
64     var baseNum1 = 0, baseNum2 = 0;
65     var baseNum3, baseNum4;
66     try {
67         baseNum1 = num1.toString().split(".")[1].length;
68     } catch (e) {
69         baseNum1 = 0;
70     }
71     try {
72         baseNum2 = num2.toString().split(".")[1].length;
73     } catch (e) {
74         baseNum2 = 0;
75     }
76     with (Math) {
77         baseNum3 = Number(num1.toString().replace(".", ""));
78         baseNum4 = Number(num2.toString().replace(".", ""));
79         return (baseNum3 / baseNum4) * pow(10, baseNum2 - baseNum1);
80     }
81 }

 

2、整数运算在数字特别大的时候,计算结果的尾数也会不准确。如超过9个9乘以本身的乘法运算时,计算出的结果最大是999999998000000000,正常结果个位数应该为1,但是js运算结果将个位数去掉了,类似数据比较大时,经验证,7位数乘以7位数还是正常的,超过后就不准确了。网上搜到国外有个针对js计算大数值的情况,是麻省理工的专门写了大数值运算的算法。乘法运算可支持15位以内的运算。如下是js算法全文

 

 

   1 /*
   2     JavaScript BigInteger library version 0.9
   3     http://silentmatt.com/biginteger/
   4 
   5     Copyright (c) 2009 Matthew Crumley <email@matthewcrumley.com>
   6     Copyright (c) 2010,2011 by John Tobey <John.Tobey@gmail.com>
   7     Licensed under the MIT license.
   8 
   9     Support for arbitrary internal representation base was added by
  10     Vitaly Magerya.
  11 */
  12 
  13 /*
  14     File: biginteger.js
  15 
  16     Exports:
  17 
  18         <BigInteger>
  19 */
  20 (function(exports) {
  21 "use strict";
  22 /*
  23     Class: BigInteger
  24     An arbitrarily-large integer.
  25 
  26     <BigInteger> objects should be considered immutable. None of the "built-in"
  27     methods modify *this* or their arguments. All properties should be
  28     considered private.
  29 
  30     All the methods of <BigInteger> instances can be called "statically". The
  31     static versions are convenient if you don‘t already have a <BigInteger>
  32     object.
  33 
  34     As an example, these calls are equivalent.
  35 
  36     > BigInteger(4).multiply(5); // returns BigInteger(20);
  37     > BigInteger.multiply(4, 5); // returns BigInteger(20);
  38 
  39     > var a = 42;
  40     > var a = BigInteger.toJSValue("0b101010"); // Not completely useless...
  41 */
  42 
  43 var CONSTRUCT = {}; // Unique token to call "private" version of constructor
  44 
  45 /*
  46     Constructor: BigInteger()
  47     Convert a value to a <BigInteger>.
  48 
  49     Although <BigInteger()> is the constructor for <BigInteger> objects, it is
  50     best not to call it as a constructor. If *n* is a <BigInteger> object, it is
  51     simply returned as-is. Otherwise, <BigInteger()> is equivalent to <parse>
  52     without a radix argument.
  53 
  54     > var n0 = BigInteger();      // Same as <BigInteger.ZERO>
  55     > var n1 = BigInteger("123"); // Create a new <BigInteger> with value 123
  56     > var n2 = BigInteger(123);   // Create a new <BigInteger> with value 123
  57     > var n3 = BigInteger(n2);    // Return n2, unchanged
  58 
  59     The constructor form only takes an array and a sign. *n* must be an
  60     array of numbers in little-endian order, where each digit is between 0
  61     and BigInteger.base.  The second parameter sets the sign: -1 for
  62     negative, +1 for positive, or 0 for zero. The array is *not copied and
  63     may be modified*. If the array contains only zeros, the sign parameter
  64     is ignored and is forced to zero.
  65 
  66     > new BigInteger([5], -1): create a new BigInteger with value -5
  67 
  68     Parameters:
  69 
  70         n - Value to convert to a <BigInteger>.
  71 
  72     Returns:
  73 
  74         A <BigInteger> value.
  75 
  76     See Also:
  77 
  78         <parse>, <BigInteger>
  79 */
  80 function BigInteger(n, s, token) {
  81     if (token !== CONSTRUCT) {
  82         if (n instanceof BigInteger) {
  83             return n;
  84         }
  85         else if (typeof n === "undefined") {
  86             return ZERO;
  87         }
  88         return BigInteger.parse(n);
  89     }
  90 
  91     n = n || [];  // Provide the nullary constructor for subclasses.
  92     while (n.length && !n[n.length - 1]) {
  93         --n.length;
  94     }
  95     this._d = n;
  96     this._s = n.length ? (s || 1) : 0;
  97 }
  98 
  99 BigInteger._construct = function(n, s) {
 100     return new BigInteger(n, s, CONSTRUCT);
 101 };
 102 
 103 // Base-10 speedup hacks in parse, toString, exp10 and log functions
 104 // require base to be a power of 10. 10^7 is the largest such power
 105 // that won‘t cause a precision loss when digits are multiplied.
 106 var BigInteger_base = 10000000;
 107 var BigInteger_base_log10 = 7;
 108 
 109 BigInteger.base = BigInteger_base;
 110 BigInteger.base_log10 = BigInteger_base_log10;
 111 
 112 var ZERO = new BigInteger([], 0, CONSTRUCT);
 113 // Constant: ZERO
 114 // <BigInteger> 0.
 115 BigInteger.ZERO = ZERO;
 116 
 117 var ONE = new BigInteger([1], 1, CONSTRUCT);
 118 // Constant: ONE
 119 // <BigInteger> 1.
 120 BigInteger.ONE = ONE;
 121 
 122 var M_ONE = new BigInteger(ONE._d, -1, CONSTRUCT);
 123 // Constant: M_ONE
 124 // <BigInteger> -1.
 125 BigInteger.M_ONE = M_ONE;
 126 
 127 // Constant: _0
 128 // Shortcut for <ZERO>.
 129 BigInteger._0 = ZERO;
 130 
 131 // Constant: _1
 132 // Shortcut for <ONE>.
 133 BigInteger._1 = ONE;
 134 
 135 /*
 136     Constant: small
 137     Array of <BigIntegers> from 0 to 36.
 138 
 139     These are used internally for parsing, but useful when you need a "small"
 140     <BigInteger>.
 141 
 142     See Also:
 143 
 144         <ZERO>, <ONE>, <_0>, <_1>
 145 */
 146 BigInteger.small = [
 147     ZERO,
 148     ONE,
 149     /* Assuming BigInteger_base > 36 */
 150     new BigInteger( [2], 1, CONSTRUCT),
 151     new BigInteger( [3], 1, CONSTRUCT),
 152     new BigInteger( [4], 1, CONSTRUCT),
 153     new BigInteger( [5], 1, CONSTRUCT),
 154     new BigInteger( [6], 1, CONSTRUCT),
 155     new BigInteger( [7], 1, CONSTRUCT),
 156     new BigInteger( [8], 1, CONSTRUCT),
 157     new BigInteger( [9], 1, CONSTRUCT),
 158     new BigInteger([10], 1, CONSTRUCT),
 159     new BigInteger([11], 1, CONSTRUCT),
 160     new BigInteger([12], 1, CONSTRUCT),
 161     new BigInteger([13], 1, CONSTRUCT),
 162     new BigInteger([14], 1, CONSTRUCT),
 163     new BigInteger([15], 1, CONSTRUCT),
 164     new BigInteger([16], 1, CONSTRUCT),
 165     new BigInteger([17], 1, CONSTRUCT),
 166     new BigInteger([18], 1, CONSTRUCT),
 167     new BigInteger([19], 1, CONSTRUCT),
 168     new BigInteger([20], 1, CONSTRUCT),
 169     new BigInteger([21], 1, CONSTRUCT),
 170     new BigInteger([22], 1, CONSTRUCT),
 171     new BigInteger([23], 1, CONSTRUCT),
 172     new BigInteger([24], 1, CONSTRUCT),
 173     new BigInteger([25], 1, CONSTRUCT),
 174     new BigInteger([26], 1, CONSTRUCT),
 175     new BigInteger([27], 1, CONSTRUCT),
 176     new BigInteger([28], 1, CONSTRUCT),
 177     new BigInteger([29], 1, CONSTRUCT),
 178     new BigInteger([30], 1, CONSTRUCT),
 179     new BigInteger([31], 1, CONSTRUCT),
 180     new BigInteger([32], 1, CONSTRUCT),
 181     new BigInteger([33], 1, CONSTRUCT),
 182     new BigInteger([34], 1, CONSTRUCT),
 183     new BigInteger([35], 1, CONSTRUCT),
 184     new BigInteger([36], 1, CONSTRUCT)
 185 ];
 186 
 187 // Used for parsing/radix conversion
 188 BigInteger.digits = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ".split("");
 189 
 190 /*
 191     Method: toString
 192     Convert a <BigInteger> to a string.
 193 
 194     When *base* is greater than 10, letters are upper case.
 195 
 196     Parameters:
 197 
 198         base - Optional base to represent the number in (default is base 10).
 199                Must be between 2 and 36 inclusive, or an Error will be thrown.
 200 
 201     Returns:
 202 
 203         The string representation of the <BigInteger>.
 204 */
 205 BigInteger.prototype.toString = function(base) {
 206     base = +base || 10;
 207     if (base < 2 || base > 36) {
 208         throw new Error("illegal radix " + base + ".");
 209     }
 210     if (this._s === 0) {
 211         return "0";
 212     }
 213     if (base === 10) {
 214         var str = this._s < 0 ? "-" : "";
 215         str += this._d[this._d.length - 1].toString();
 216         for (var i = this._d.length - 2; i >= 0; i--) {
 217             var group = this._d[i].toString();
 218             while (group.length < BigInteger_base_log10) group = 0 + group;
 219             str += group;
 220         }
 221         return str;
 222     }
 223     else {
 224         var numerals = BigInteger.digits;
 225         base = BigInteger.small[base];
 226         var sign = this._s;
 227 
 228         var n = this.abs();
 229         var digits = [];
 230         var digit;
 231 
 232         while (n._s !== 0) {
 233             var divmod = n.divRem(base);
 234             n = divmod[0];
 235             digit = divmod[1];
 236             // TODO: This could be changed to unshift instead of reversing at the end.
 237             // Benchmark both to compare speeds.
 238             digits.push(numerals[digit.valueOf()]);
 239         }
 240         return (sign < 0 ? "-" : "") + digits.reverse().join("");
 241     }
 242 };
 243 
 244 // Verify strings for parsing
 245 BigInteger.radixRegex = [
 246     /^$/,
 247     /^$/,
 248     /^[01]*$/,
 249     /^[012]*$/,
 250     /^[0-3]*$/,
 251     /^[0-4]*$/,
 252     /^[0-5]*$/,
 253     /^[0-6]*$/,
 254     /^[0-7]*$/,
 255     /^[0-8]*$/,
 256     /^[0-9]*$/,
 257     /^[0-9aA]*$/,
 258     /^[0-9abAB]*$/,
 259     /^[0-9abcABC]*$/,
 260     /^[0-9a-dA-D]*$/,
 261     /^[0-9a-eA-E]*$/,
 262     /^[0-9a-fA-F]*$/,
 263     /^[0-9a-gA-G]*$/,
 264     /^[0-9a-hA-H]*$/,
 265     /^[0-9a-iA-I]*$/,
 266     /^[0-9a-jA-J]*$/,
 267     /^[0-9a-kA-K]*$/,
 268     /^[0-9a-lA-L]*$/,
 269     /^[0-9a-mA-M]*$/,
 270     /^[0-9a-nA-N]*$/,
 271     /^[0-9a-oA-O]*$/,
 272     /^[0-9a-pA-P]*$/,
 273     /^[0-9a-qA-Q]*$/,
 274     /^[0-9a-rA-R]*$/,
 275     /^[0-9a-sA-S]*$/,
 276     /^[0-9a-tA-T]*$/,
 277     /^[0-9a-uA-U]*$/,
 278     /^[0-9a-vA-V]*$/,
 279     /^[0-9a-wA-W]*$/,
 280     /^[0-9a-xA-X]*$/,
 281     /^[0-9a-yA-Y]*$/,
 282     /^[0-9a-zA-Z]*$/
 283 ];
 284 
 285 /*
 286     Function: parse
 287     Parse a string into a <BigInteger>.
 288 
 289     *base* is optional but, if provided, must be from 2 to 36 inclusive. If
 290     *base* is not provided, it will be guessed based on the leading characters
 291     of *s* as follows:
 292 
 293     - "0x" or "0X": *base* = 16
 294     - "0c" or "0C": *base* = 8
 295     - "0b" or "0B": *base* = 2
 296     - else: *base* = 10
 297 
 298     If no base is provided, or *base* is 10, the number can be in exponential
 299     form. For example, these are all valid:
 300 
 301     > BigInteger.parse("1e9");              // Same as "1000000000"
 302     > BigInteger.parse("1.234*10^3");       // Same as 1234
 303     > BigInteger.parse("56789 * 10 ** -2"); // Same as 567
 304 
 305     If any characters fall outside the range defined by the radix, an exception
 306     will be thrown.
 307 
 308     Parameters:
 309 
 310         s - The string to parse.
 311         base - Optional radix (default is to guess based on *s*).
 312 
 313     Returns:
 314 
 315         a <BigInteger> instance.
 316 */
 317 BigInteger.parse = function(s, base) {
 318     // Expands a number in exponential form to decimal form.
 319     // expandExponential("-13.441*10^5") === "1344100";
 320     // expandExponential("1.12300e-1") === "0.112300";
 321     // expandExponential(1000000000000000000000000000000) === "1000000000000000000000000000000";
 322     function expandExponential(str) {
 323         str = str.replace(/\s*[*xX]\s*10\s*(\^|\*\*)\s*/, "e");
 324 
 325         return str.replace(/^([+\-])?(\d+)\.?(\d*)[eE]([+\-]?\d+)$/, function(x, s, n, f, c) {
 326             c = +c;
 327             var l = c < 0;
 328             var i = n.length + c;
 329             x = (l ? n : f).length;
 330             c = ((c = Math.abs(c)) >= x ? c - x + l : 0);
 331             var z = (new Array(c + 1)).join("0");
 332             var r = n + f;
 333             return (s || "") + (l ? r = z + r : r += z).substr(0, i += l ? z.length : 0) + (i < r.length ? "." + r.substr(i) : "");
 334         });
 335     }
 336 
 337     s = s.toString();
 338     if (typeof base === "undefined" || +base === 10) {
 339         s = expandExponential(s);
 340     }
 341 
 342     var prefixRE;
 343     if (typeof base === "undefined") {
 344         prefixRE = 0[xcb];
 345     }
 346     else if (base == 16) {
 347         prefixRE = 0x;
 348     }
 349     else if (base == 8) {
 350         prefixRE = 0c;
 351     }
 352     else if (base == 2) {
 353         prefixRE = 0b;
 354     }
 355     else {
 356         prefixRE = ‘‘;
 357     }
 358     var parts = new RegExp(^([+\\-]?)( + prefixRE + )?([0-9a-z]*)(?:\\.\\d*)?$, i).exec(s);
 359     if (parts) {
 360         var sign = parts[1] || "+";
 361         var baseSection = parts[2] || "";
 362         var digits = parts[3] || "";
 363 
 364         if (typeof base === "undefined") {
 365             // Guess base
 366             if (baseSection === "0x" || baseSection === "0X") { // Hex
 367                 base = 16;
 368             }
 369             else if (baseSection === "0c" || baseSection === "0C") { // Octal
 370                 base = 8;
 371             }
 372             else if (baseSection === "0b" || baseSection === "0B") { // Binary
 373                 base = 2;
 374             }
 375             else {
 376                 base = 10;
 377             }
 378         }
 379         else if (base < 2 || base > 36) {
 380             throw new Error("Illegal radix " + base + ".");
 381         }
 382 
 383         base = +base;
 384 
 385         // Check for digits outside the range
 386         if (!(BigInteger.radixRegex[base].test(digits))) {
 387             throw new Error("Bad digit for radix " + base);
 388         }
 389 
 390         // Strip leading zeros, and convert to array
 391         digits = digits.replace(/^0+/, "").split("");
 392         if (digits.length === 0) {
 393             return ZERO;
 394         }
 395 
 396         // Get the sign (we know it‘s not zero)
 397         sign = (sign === "-") ? -1 : 1;
 398 
 399         // Optimize 10
 400         if (base == 10) {
 401             var d = [];
 402             while (digits.length >= BigInteger_base_log10) {
 403                 d.push(parseInt(digits.splice(digits.length-BigInteger.base_log10, BigInteger.base_log10).join(‘‘), 10));
 404             }
 405             d.push(parseInt(digits.join(‘‘), 10));
 406             return new BigInteger(d, sign, CONSTRUCT);
 407         }
 408 
 409         // Do the conversion
 410         var d = ZERO;
 411         base = BigInteger.small[base];
 412         var small = BigInteger.small;
 413         for (var i = 0; i < digits.length; i++) {
 414             d = d.multiply(base).add(small[parseInt(digits[i], 36)]);
 415         }
 416         return new BigInteger(d._d, sign, CONSTRUCT);
 417     }
 418     else {
 419         throw new Error("Invalid BigInteger format: " + s);
 420     }
 421 };
 422 
 423 /*
 424     Function: add
 425     Add two <BigIntegers>.
 426 
 427     Parameters:
 428 
 429         n - The number to add to *this*. Will be converted to a <BigInteger>.
 430 
 431     Returns:
 432 
 433         The numbers added together.
 434 
 435     See Also:
 436 
 437         <subtract>, <multiply>, <quotient>, <next>
 438 */
 439 BigInteger.prototype.add = function(n) {
 440     if (this._s === 0) {
 441         return BigInteger(n);
 442     }
 443 
 444     n = BigInteger(n);
 445     if (n._s === 0) {
 446         return this;
 447     }
 448     if (this._s !== n._s) {
 449         n = n.negate();
 450         return this.subtract(n);
 451     }
 452 
 453     var a = this._d;
 454     var b = n._d;
 455     var al = a.length;
 456     var bl = b.length;
 457     var sum = new Array(Math.max(al, bl) + 1);
 458     var size = Math.min(al, bl);
 459     var carry = 0;
 460     var digit;
 461 
 462     for (var i = 0; i < size; i++) {
 463         digit = a[i] + b[i] + carry;
 464         sum[i] = digit % BigInteger_base;
 465         carry = (digit / BigInteger_base) | 0;
 466     }
 467     if (bl > al) {
 468         a = b;
 469         al = bl;
 470     }
 471     for (i = size; carry && i < al; i++) {
 472         digit = a[i] + carry;
 473         sum[i] = digit % BigInteger_base;
 474         carry = (digit / BigInteger_base) | 0;
 475     }
 476     if (carry) {
 477         sum[i] = carry;
 478     }
 479 
 480     for ( ; i < al; i++) {
 481         sum[i] = a[i];
 482     }
 483 
 484     return new BigInteger(sum, this._s, CONSTRUCT);
 485 };
 486 
 487 /*
 488     Function: negate
 489     Get the additive inverse of a <BigInteger>.
 490 
 491     Returns:
 492 
 493         A <BigInteger> with the same magnatude, but with the opposite sign.
 494 
 495     See Also:
 496 
 497         <abs>
 498 */
 499 BigInteger.prototype.negate = function() {
 500     return new BigInteger(this._d, (-this._s) | 0, CONSTRUCT);
 501 };
 502 
 503 /*
 504     Function: abs
 505     Get the absolute value of a <BigInteger>.
 506 
 507     Returns:
 508 
 509         A <BigInteger> with the same magnatude, but always positive (or zero).
 510 
 511     See Also:
 512 
 513         <negate>
 514 */
 515 BigInteger.prototype.abs = function() {
 516     return (this._s < 0) ? this.negate() : this;
 517 };
 518 
 519 /*
 520     Function: subtract
 521     Subtract two <BigIntegers>.
 522 
 523     Parameters:
 524 
 525         n - The number to subtract from *this*. Will be converted to a <BigInteger>.
 526 
 527     Returns:
 528 
 529         The *n* subtracted from *this*.
 530 
 531     See Also:
 532 
 533         <add>, <multiply>, <quotient>, <prev>
 534 */
 535 BigInteger.prototype.subtract = function(n) {
 536     if (this._s === 0) {
 537         return BigInteger(n).negate();
 538     }
 539 
 540     n = BigInteger(n);
 541     if (n._s === 0) {
 542         return this;
 543     }
 544     if (this._s !== n._s) {
 545         n = n.negate();
 546         return this.add(n);
 547     }
 548 
 549     var m = this;
 550     // negative - negative => -|a| - -|b| => -|a| + |b| => |b| - |a|
 551     if (this._s < 0) {
 552         m = new BigInteger(n._d, 1, CONSTRUCT);
 553         n = new BigInteger(this._d, 1, CONSTRUCT);
 554     }
 555 
 556     // Both are positive => a - b
 557     var sign = m.compareAbs(n);
 558     if (sign === 0) {
 559         return ZERO;
 560     }
 561     else if (sign < 0) {
 562         // swap m and n
 563         var t = n;
 564         n = m;
 565         m = t;
 566     }
 567 
 568     // a > b
 569     var a = m._d;
 570     var b = n._d;
 571     var al = a.length;
 572     var bl = b.length;
 573     var diff = new Array(al); // al >= bl since a > b
 574     var borrow = 0;
 575     var i;
 576     var digit;
 577 
 578     for (i = 0; i < bl; i++) {
 579         digit = a[i] - borrow - b[i];
 580         if (digit < 0) {
 581             digit += BigInteger_base;
 582             borrow = 1;
 583         }
 584         else {
 585             borrow = 0;
 586         }
 587         diff[i] = digit;
 588     }
 589     for (i = bl; i < al; i++) {
 590         digit = a[i] - borrow;
 591         if (digit < 0) {
 592             digit += BigInteger_base;
 593         }
 594         else {
 595             diff[i++] = digit;
 596             break;
 597         }
 598         diff[i] = digit;
 599     }
 600     for ( ; i < al; i++) {
 601         diff[i] = a[i];
 602     }
 603 
 604     return new BigInteger(diff, sign, CONSTRUCT);
 605 };
 606 
 607 (function() {
 608     function addOne(n, sign) {
 609         var a = n._d;
 610         var sum = a.slice();
 611         var carry = true;
 612         var i = 0;
 613 
 614         while (true) {
 615             var digit = (a[i] || 0) + 1;
 616             sum[i] = digit % BigInteger_base;
 617             if (digit <= BigInteger_base - 1) {
 618                 break;
 619             }
 620             ++i;
 621         }
 622 
 623         return new BigInteger(sum, sign, CONSTRUCT);
 624     }
 625 
 626     function subtractOne(n, sign) {
 627         var a = n._d;
 628         var sum = a.slice();
 629         var borrow = true;
 630         var i = 0;
 631 
 632         while (true) {
 633             var digit = (a[i] || 0) - 1;
 634             if (digit < 0) {
 635                 sum[i] = digit + BigInteger_base;
 636             }
 637             else {
 638                 sum[i] = digit;
 639                 break;
 640             }
 641             ++i;
 642         }
 643 
 644         return new BigInteger(sum, sign, CONSTRUCT);
 645     }
 646 
 647     /*
 648         Function: next
 649         Get the next <BigInteger> (add one).
 650 
 651         Returns:
 652 
 653             *this* + 1.
 654 
 655         See Also:
 656 
 657             <add>, <prev>
 658     */
 659     BigInteger.prototype.next = function() {
 660         switch (this._s) {
 661         case 0:
 662             return ONE;
 663         case -1:
 664             return subtractOne(this, -1);
 665         // case 1:
 666         default:
 667             return addOne(this, 1);
 668         }
 669     };
 670 
 671     /*
 672         Function: prev
 673         Get the previous <BigInteger> (subtract one).
 674 
 675         Returns:
 676 
 677             *this* - 1.
 678 
 679         See Also:
 680 
 681             <next>, <subtract>
 682     */
 683     BigInteger.prototype.prev = function() {
 684         switch (this._s) {
 685         case 0:
 686             return M_ONE;
 687         case -1:
 688             return addOne(this, -1);
 689         // case 1:
 690         default:
 691             return subtractOne(this, 1);
 692         }
 693     };
 694 })();
 695 
 696 /*
 697     Function: compareAbs
 698     Compare the absolute value of two <BigIntegers>.
 699 
 700     Calling <compareAbs> is faster than calling <abs> twice, then <compare>.
 701 
 702     Parameters:
 703 
 704         n - The number to compare to *this*. Will be converted to a <BigInteger>.
 705 
 706     Returns:
 707 
 708         -1, 0, or +1 if *|this|* is less than, equal to, or greater than *|n|*.
 709 
 710     See Also:
 711 
 712         <compare>, <abs>
 713 */
 714 BigInteger.prototype.compareAbs = function(n) {
 715     if (this === n) {
 716         return 0;
 717     }
 718 
 719     if (!(n instanceof BigInteger)) {
 720         if (!isFinite(n)) {
 721             return(isNaN(n) ? n : -1);
 722         }
 723         n = BigInteger(n);
 724     }
 725 
 726     if (this._s === 0) {
 727         return (n._s !== 0) ? -1 : 0;
 728     }
 729     if (n._s === 0) {
 730         return 1;
 731     }
 732 
 733     var l = this._d.length;
 734     var nl = n._d.length;
 735     if (l < nl) {
 736         return -1;
 737     }
 738     else if (l > nl) {
 739         return 1;
 740     }
 741 
 742     var a = this._d;
 743     var b = n._d;
 744     for (var i = l-1; i >= 0; i--) {
 745         if (a[i] !== b[i]) {
 746             return a[i] < b[i] ? -1 : 1;
 747         }
 748     }
 749 
 750     return 0;
 751 };
 752 
 753 /*
 754     Function: compare
 755     Compare two <BigIntegers>.
 756 
 757     Parameters:
 758 
 759         n - The number to compare to *this*. Will be converted to a <BigInteger>.
 760 
 761     Returns:
 762 
 763         -1, 0, or +1 if *this* is less than, equal to, or greater than *n*.
 764 
 765     See Also:
 766 
 767         <compareAbs>, <isPositive>, <isNegative>, <isUnit>
 768 */
 769 BigInteger.prototype.compare = function(n) {
 770     if (this === n) {
 771         return 0;
 772     }
 773 
 774     n = BigInteger(n);
 775 
 776     if (this._s === 0) {
 777         return -n._s;
 778     }
 779 
 780     if (this._s === n._s) { // both positive or both negative
 781         var cmp = this.compareAbs(n);
 782         return cmp * this._s;
 783     }
 784     else {
 785         return this._s;
 786     }
 787 };
 788 
 789 /*
 790     Function: isUnit
 791     Return true iff *this* is either 1 or -1.
 792 
 793     Returns:
 794 
 795         true if *this* compares equal to <BigInteger.ONE> or <BigInteger.M_ONE>.
 796 
 797     See Also:
 798 
 799         <isZero>, <isNegative>, <isPositive>, <compareAbs>, <compare>,
 800         <BigInteger.ONE>, <BigInteger.M_ONE>
 801 */
 802 BigInteger.prototype.isUnit = function() {
 803     return this === ONE ||
 804         this === M_ONE ||
 805         (this._d.length === 1 && this._d[0] === 1);
 806 };
 807 
 808 /*
 809     Function: multiply
 810     Multiply two <BigIntegers>.
 811 
 812     Parameters:
 813 
 814         n - The number to multiply *this* by. Will be converted to a
 815         <BigInteger>.
 816 
 817     Returns:
 818 
 819         The numbers multiplied together.
 820 
 821     See Also:
 822 
 823         <add>, <subtract>, <quotient>, <square>
 824 */
 825 BigInteger.prototype.multiply = function(n) {
 826     // TODO: Consider adding Karatsuba multiplication for large numbers
 827     if (this._s === 0) {
 828         return ZERO;
 829     }
 830 
 831     n = BigInteger(n);
 832     if (n._s === 0) {
 833         return ZERO;
 834     }
 835     if (this.isUnit()) {
 836         if (this._s < 0) {
 837             return n.negate();
 838         }
 839         return n;
 840     }
 841     if (n.isUnit()) {
 842         if (n._s < 0) {
 843             return this.negate();
 844         }
 845         return this;
 846     }
 847     if (this === n) {
 848         return this.square();
 849     }
 850 
 851     var r = (this._d.length >= n._d.length);
 852     var a = (r ? this : n)._d; // a will be longer than b
 853     var b = (r ? n : this)._d;
 854     var al = a.length;
 855     var bl = b.length;
 856 
 857     var pl = al + bl;
 858     var partial = new Array(pl);
 859     var i;
 860     for (i = 0; i < pl; i++) {
 861         partial[i] = 0;
 862     }
 863 
 864     for (i = 0; i < bl; i++) {
 865         var carry = 0;
 866         var bi = b[i];
 867         var jlimit = al + i;
 868         var digit;
 869         for (var j = i; j < jlimit; j++) {
 870             digit = partial[j] + bi * a[j - i] + carry;
 871             carry = (digit / BigInteger_base) | 0;
 872             partial[j] = (digit % BigInteger_base) | 0;
 873         }
 874         if (carry) {
 875             digit = partial[j] + carry;
 876             carry = (digit / BigInteger_base) | 0;
 877             partial[j] = digit % BigInteger_base;
 878         }
 879     }
 880     return new BigInteger(partial, this._s * n._s, CONSTRUCT);
 881 };
 882 
 883 // Multiply a BigInteger by a single-digit native number
 884 // Assumes that this and n are >= 0
 885 // This is not really intended to be used outside the library itself
 886 BigInteger.prototype.multiplySingleDigit = function(n) {
 887     if (n === 0 || this._s === 0) {
 888         return ZERO;
 889     }
 890     if (n === 1) {
 891         return this;
 892     }
 893 
 894     var digit;
 895     if (this._d.length === 1) {
 896         digit = this._d[0] * n;
 897         if (digit >= BigInteger_base) {
 898             return new BigInteger([(digit % BigInteger_base)|0,
 899                     (digit / BigInteger_base)|0], 1, CONSTRUCT);
 900         }
 901         return new BigInteger([digit], 1, CONSTRUCT);
 902     }
 903 
 904     if (n === 2) {
 905         return this.add(this);
 906     }
 907     if (this.isUnit()) {
 908         return new BigInteger([n], 1, CONSTRUCT);
 909     }
 910 
 911     var a = this._d;
 912     var al = a.length;
 913 
 914     var pl = al + 1;
 915     var partial = new Array(pl);
 916     for (var i = 0; i < pl; i++) {
 917         partial[i] = 0;
 918     }
 919 
 920     var carry = 0;
 921     for (var j = 0; j < al; j++) {
 922         digit = n * a[j] + carry;
 923         carry = (digit / BigInteger_base) | 0;
 924         partial[j] = (digit % BigInteger_base) | 0;
 925     }
 926     if (carry) {
 927         partial[j] = carry;
 928     }
 929 
 930     return new BigInteger(partial, 1, CONSTRUCT);
 931 };
 932 
 933 /*
 934     Function: square
 935     Multiply a <BigInteger> by itself.
 936 
 937     This is slightly faster than regular multiplication, since it removes the
 938     duplicated multiplcations.
 939 
 940     Returns:
 941 
 942         > this.multiply(this)
 943 
 944     See Also:
 945         <multiply>
 946 */
 947 BigInteger.prototype.square = function() {
 948     // Normally, squaring a 10-digit number would take 100 multiplications.
 949     // Of these 10 are unique diagonals, of the remaining 90 (100-10), 45 are repeated.
 950     // This procedure saves (N*(N-1))/2 multiplications, (e.g., 45 of 100 multiplies).
 951     // Based on code by Gary Darby, Intellitech Systems Inc., www.DelphiForFun.org
 952 
 953     if (this._s === 0) {
 954         return ZERO;
 955     }
 956     if (this.isUnit()) {
 957         return ONE;
 958     }
 959 
 960     var digits = this._d;
 961     var length = digits.length;
 962     var imult1 = new Array(length + length + 1);
 963     var product, carry, k;
 964     var i;
 965 
 966     // Calculate diagonal
 967     for (i = 0; i < length; i++) {
 968         k = i * 2;
 969         product = digits[i] * digits[i];
 970         carry = (product / BigInteger_base) | 0;
 971         imult1[k] = product % BigInteger_base;
 972         imult1[k + 1] = carry;
 973     }
 974 
 975     // Calculate repeating part
 976     for (i = 0; i < length; i++) {
 977         carry = 0;
 978         k = i * 2 + 1;
 979         for (var j = i + 1; j < length; j++, k++) {
 980             product = digits[j] * digits[i] * 2 + imult1[k] + carry;
 981             carry = (product / BigInteger_base) | 0;
 982             imult1[k] = product % BigInteger_base;
 983         }
 984         k = length + i;
 985         var digit = carry + imult1[k];
 986         carry = (digit / BigInteger_base) | 0;
 987         imult1[k] = digit % BigInteger_base;
 988         imult1[k + 1] += carry;
 989     }
 990 
 991     return new BigInteger(imult1, 1, CONSTRUCT);
 992 };
 993 
 994 /*
 995     Function: quotient
 996     Divide two <BigIntegers> and truncate towards zero.
 997 
 998     <quotient> throws an exception if *n* is zero.
 999 
1000     Parameters:
1001 
1002         n - The number to divide *this* by. Will be converted to a <BigInteger>.
1003 
1004     Returns:
1005 
1006         The *this* / *n*, truncated to an integer.
1007 
1008     See Also:
1009 
1010         <add>, <subtract>, <multiply>, <divRem>, <remainder>
1011 */
1012 BigInteger.prototype.quotient = function(n) {
1013     return this.divRem(n)[0];
1014 };
1015 
1016 /*
1017     Function: divide
1018     Deprecated synonym for <quotient>.
1019 */
1020 BigInteger.prototype.divide = BigInteger.prototype.quotient;
1021 
1022 /*
1023     Function: remainder
1024     Calculate the remainder of two <BigIntegers>.
1025 
1026     <remainder> throws an exception if *n* is zero.
1027 
1028     Parameters:
1029 
1030         n - The remainder after *this* is divided *this* by *n*. Will be
1031             converted to a <BigInteger>.
1032 
1033     Returns:
1034 
1035         *this* % *n*.
1036 
1037     See Also:
1038 
1039         <divRem>, <quotient>
1040 */
1041 BigInteger.prototype.remainder = function(n) {
1042     return this.divRem(n)[1];
1043 };
1044 
1045 /*
1046     Function: divRem
1047     Calculate the integer quotient and remainder of two <BigIntegers>.
1048 
1049     <divRem> throws an exception if *n* is zero.
1050 
1051     Parameters:
1052 
1053         n - The number to divide *this* by. Will be converted to a <BigInteger>.
1054 
1055     Returns:
1056 
1057         A two-element array containing the quotient and the remainder.
1058 
1059         > a.divRem(b)
1060 
1061         is exactly equivalent to
1062 
1063         > [a.quotient(b), a.remainder(b)]
1064 
1065         except it is faster, because they are calculated at the same time.
1066 
1067     See Also:
1068 
1069         <quotient>, <remainder>
1070 */
1071 BigInteger.prototype.divRem = function(n) {
1072     n = BigInteger(n);
1073     if (n._s === 0) {
1074         throw new Error("Divide by zero");
1075     }
1076     if (this._s === 0) {
1077         return [ZERO, ZERO];
1078     }
1079     if (n._d.length === 1) {
1080         return this.divRemSmall(n._s * n._d[0]);
1081     }
1082 
1083     // Test for easy cases -- |n1| <= |n2|
1084     switch (this.compareAbs(n)) {
1085     case 0: // n1 == n2
1086         return [this._s === n._s ? ONE : M_ONE, ZERO];
1087     case -1: // |n1| < |n2|
1088         return [ZERO, this];
1089     }
1090 
1091     var sign = this._s * n._s;
1092     var a = n.abs();
1093     var b_digits = this._d;
1094     var b_index = b_digits.length;
1095     var digits = n._d.length;
1096     var quot = [];
1097     var guess;
1098 
1099     var part = new BigInteger([], 0, CONSTRUCT);
1100     part._s = 1;
1101 
1102     while (b_index) {
1103         part._d.unshift(b_digits[--b_index]);
1104 
1105         if (part.compareAbs(n) < 0) {
1106             quot.push(0);
1107             continue;
1108         }
1109         if (part._s === 0) {
1110             guess = 0;
1111         }
1112         else {
1113             var xlen = part._d.length, ylen = a._d.length;
1114             var highx = part._d[xlen-1]*BigInteger_base + part._d[xlen-2];
1115             var highy = a._d[ylen-1]*BigInteger_base + a._d[ylen-2];
1116             if (part._d.length > a._d.length) {
1117                 // The length of part._d can either match a._d length,
1118                 // or exceed it by one.
1119                 highx = (highx+1)*BigInteger_base;
1120             }
1121             guess = Math.ceil(highx/highy);
1122         }
1123         do {
1124             var check = a.multiplySingleDigit(guess);
1125             if (check.compareAbs(part) <= 0) {
1126                 break;
1127             }
1128             guess--;
1129         } while (guess);
1130 
1131         quot.push(guess);
1132         if (!guess) {
1133             continue;
1134         }
1135         var diff = part.subtract(check);
1136         part._d = diff._d.slice();
1137         if (part._d.length === 0) {
1138             part._s = 0;
1139         }
1140     }
1141 
1142     return [new BigInteger(quot.reverse(), sign, CONSTRUCT),
1143            new BigInteger(part._d, this._s, CONSTRUCT)];
1144 };
1145 
1146 // Throws an exception if n is outside of (-BigInteger.base, -1] or
1147 // [1, BigInteger.base).  It‘s not necessary to call this, since the
1148 // other division functions will call it if they are able to.
1149 BigInteger.prototype.divRemSmall = function(n) {
1150     var r;
1151     n = +n;
1152     if (n === 0) {
1153         throw new Error("Divide by zero");
1154     }
1155 
1156     var n_s = n < 0 ? -1 : 1;
1157     var sign = this._s * n_s;
1158     n = Math.abs(n);
1159 
1160     if (n < 1 || n >= BigInteger_base) {
1161         throw new Error("Argument out of range");
1162     }
1163 
1164     if (this._s === 0) {
1165         return [ZERO, ZERO];
1166     }
1167 
1168     if (n === 1 || n === -1) {
1169         return [(sign === 1) ? this.abs() : new BigInteger(this._d, sign, CONSTRUCT), ZERO];
1170     }
1171 
1172     // 2 <= n < BigInteger_base
1173 
1174     // divide a single digit by a single digit
1175     if (this._d.length === 1) {
1176         var q = new BigInteger([(this._d[0] / n) | 0], 1, CONSTRUCT);
1177         r = new BigInteger([(this._d[0] % n) | 0], 1, CONSTRUCT);
1178         if (sign < 0) {
1179             q = q.negate();
1180         }
1181         if (this._s < 0) {
1182             r = r.negate();
1183         }
1184         return [q, r];
1185     }
1186 
1187     var digits = this._d.slice();
1188     var quot = new Array(digits.length);
1189     var part = 0;
1190     var diff = 0;
1191     var i = 0;
1192     var guess;
1193 
1194     while (digits.length) {
1195         part = part * BigInteger_base + digits[digits.length - 1];
1196         if (part < n) {
1197             quot[i++] = 0;
1198             digits.pop();
1199             diff = BigInteger_base * diff + part;
1200             continue;
1201         }
1202         if (part === 0) {
1203             guess = 0;
1204         }
1205         else {
1206             guess = (part / n) | 0;
1207         }
1208 
1209         var check = n * guess;
1210         diff = part - check;
1211         quot[i++] = guess;
1212         if (!guess) {
1213             digits.pop();
1214             continue;
1215         }
1216 
1217         digits.pop();
1218         part = diff;
1219     }
1220 
1221     r = new BigInteger([diff], 1, CONSTRUCT);
1222     if (this._s < 0) {
1223         r = r.negate();
1224     }
1225     return [new BigInteger(quot.reverse(), sign, CONSTRUCT), r];
1226 };
1227 
1228 /*
1229     Function: isEven
1230     Return true iff *this* is divisible by two.
1231 
1232     Note that <BigInteger.ZERO> is even.
1233 
1234     Returns:
1235 
1236         true if *this* is even, false otherwise.
1237 
1238     See Also:
1239 
1240         <isOdd>
1241 */
1242 BigInteger.prototype.isEven = function() {
1243     var digits = this._d;
1244     return this._s === 0 || digits.length === 0 || (digits[0] % 2) === 0;
1245 };
1246 
1247 /*
1248     Function: isOdd
1249     Return true iff *this* is not divisible by two.
1250 
1251     Returns:
1252 
1253         true if *this* is odd, false otherwise.
1254 
1255     See Also:
1256 
1257         <isEven>
1258 */
1259 BigInteger.prototype.isOdd = function() {
1260     return !this.isEven();
1261 };
1262 
1263 /*
1264     Function: sign
1265     Get the sign of a <BigInteger>.
1266 
1267     Returns:
1268 
1269         * -1 if *this* < 0
1270         * 0 if *this* == 0
1271         * +1 if *this* > 0
1272 
1273     See Also:
1274 
1275         <isZero>, <isPositive>, <isNegative>, <compare>, <BigInteger.ZERO>
1276 */
1277 BigInteger.prototype.sign = function() {
1278     return this._s;
1279 };
1280 
1281 /*
1282     Function: isPositive
1283     Return true iff *this* > 0.
1284 
1285     Returns:
1286 
1287         true if *this*.compare(<BigInteger.ZERO>) == 1.
1288 
1289     See Also:
1290 
1291         <sign>, <isZero>, <isNegative>, <isUnit>, <compare>, <BigInteger.ZERO>
1292 */
1293 BigInteger.prototype.isPositive = function() {
1294     return this._s > 0;
1295 };
1296 
1297 /*
1298     Function: isNegative
1299     Return true iff *this* < 0.
1300 
1301     Returns:
1302 
1303         true if *this*.compare(<BigInteger.ZERO>) == -1.
1304 
1305     See Also:
1306 
1307         <sign>, <isPositive>, <isZero>, <isUnit>, <compare>, <BigInteger.ZERO>
1308 */
1309 BigInteger.prototype.isNegative = function() {
1310     return this._s < 0;
1311 };
1312 
1313 /*
1314     Function: isZero
1315     Return true iff *this* == 0.
1316 
1317     Returns:
1318 
1319         true if *this*.compare(<BigInteger.ZERO>) == 0.
1320 
1321     See Also:
1322 
1323         <sign>, <isPositive>, <isNegative>, <isUnit>, <BigInteger.ZERO>
1324 */
1325 BigInteger.prototype.isZero = function() {
1326     return this._s === 0;
1327 };
1328 
1329 /*
1330     Function: exp10
1331     Multiply a <BigInteger> by a power of 10.
1332 
1333     This is equivalent to, but faster than
1334 
1335     > if (n >= 0) {
1336     >     return this.multiply(BigInteger("1e" + n));
1337     > }
1338     > else { // n <= 0
1339     >     return this.quotient(BigInteger("1e" + -n));
1340     > }
1341 
1342     Parameters:
1343 
1344         n - The power of 10 to multiply *this* by. *n* is converted to a
1345         javascipt number and must be no greater than <BigInteger.MAX_EXP>
1346         (0x7FFFFFFF), or an exception will be thrown.
1347 
1348     Returns:
1349 
1350         *this* * (10 ** *n*), truncated to an integer if necessary.
1351 
1352     See Also:
1353 
1354         <pow>, <multiply>
1355 */
1356 BigInteger.prototype.exp10 = function(n) {
1357     n = +n;
1358     if (n === 0) {
1359         return this;
1360     }
1361     if (Math.abs(n) > Number(MAX_EXP)) {
1362         throw new Error("exponent too large in BigInteger.exp10");
1363     }
1364     if (n > 0) {
1365         var k = new BigInteger(this._d.slice(), this._s, CONSTRUCT);
1366 
1367         for (; n >= BigInteger_base_log10; n -= BigInteger_base_log10) {
1368             k._d.unshift(0);
1369         }
1370         if (n == 0)
1371             return k;
1372         k._s = 1;
1373         k = k.multiplySingleDigit(Math.pow(10, n));
1374         return (this._s < 0 ? k.negate() : k);
1375     } else if (-n >= this._d.length*BigInteger_base_log10) {
1376         return ZERO;
1377     } else {
1378         var k = new BigInteger(this._d.slice(), this._s, CONSTRUCT);
1379 
1380         for (n = -n; n >= BigInteger_base_log10; n -= BigInteger_base_log10) {
1381             k._d.shift();
1382         }
1383         return (n == 0) ? k : k.divRemSmall(Math.pow(10, n))[0];
1384     }
1385 };
1386 
1387 /*
1388     Function: pow
1389     Raise a <BigInteger> to a power.
1390 
1391     In this implementation, 0**0 is 1.
1392 
1393     Parameters:
1394 
1395         n - The exponent to raise *this* by. *n* must be no greater than
1396         <BigInteger.MAX_EXP> (0x7FFFFFFF), or an exception will be thrown.
1397 
1398     Returns:
1399 
1400         *this* raised to the *nth* power.
1401 
1402     See Also:
1403 
1404         <modPow>
1405 */
1406 BigInteger.prototype.pow = function(n) {
1407     if (this.isUnit()) {
1408         if (this._s > 0) {
1409             return this;
1410         }
1411         else {
1412             return BigInteger(n).isOdd() ? this : this.negate();
1413         }
1414     }
1415 
1416     n = BigInteger(n);
1417     if (n._s === 0) {
1418         return ONE;
1419     }
1420     else if (n._s < 0) {
1421         if (this._s === 0) {
1422             throw new Error("Divide by zero");
1423         }
1424         else {
1425             return ZERO;
1426         }
1427     }
1428     if (this._s === 0) {
1429         return ZERO;
1430     }
1431     if (n.isUnit()) {
1432         return this;
1433     }
1434 
1435     if (n.compareAbs(MAX_EXP) > 0) {
1436         throw new Error("exponent too large in BigInteger.pow");
1437     }
1438     var x = this;
1439     var aux = ONE;
1440     var two = BigInteger.small[2];
1441 
1442     while (n.isPositive()) {
1443         if (n.isOdd()) {
1444             aux = aux.multiply(x);
1445             if (n.isUnit()) {
1446                 return aux;
1447             }
1448         }
1449         x = x.square();
1450         n = n.quotient(two);
1451     }
1452 
1453     return aux;
1454 };
1455 
1456 /*
1457     Function: modPow
1458     Raise a <BigInteger> to a power (mod m).
1459 
1460     Because it is reduced by a modulus, <modPow> is not limited by
1461     <BigInteger.MAX_EXP> like <pow>.
1462 
1463     Parameters:
1464 
1465         exponent - The exponent to raise *this* by. Must be positive.
1466         modulus - The modulus.
1467 
1468     Returns:
1469 
1470         *this* ^ *exponent* (mod *modulus*).
1471 
1472     See Also:
1473 
1474         <pow>, <mod>
1475 */
1476 BigInteger.prototype.modPow = function(exponent, modulus) {
1477     var result = ONE;
1478     var base = this;
1479 
1480     while (exponent.isPositive()) {
1481         if (exponent.isOdd()) {
1482             result = result.multiply(base).remainder(modulus);
1483         }
1484 
1485         exponent = exponent.quotient(BigInteger.small[2]);
1486         if (exponent.isPositive()) {
1487             base = base.square().remainder(modulus);
1488         }
1489     }
1490 
1491     return result;
1492 };
1493 
1494 /*
1495     Function: log
1496     Get the natural logarithm of a <BigInteger> as a native JavaScript number.
1497 
1498     This is equivalent to
1499 
1500     > Math.log(this.toJSValue())
1501 
1502     but handles values outside of the native number range.
1503 
1504     Returns:
1505 
1506         log( *this* )
1507 
1508     See Also:
1509 
1510         <toJSValue>
1511 */
1512 BigInteger.prototype.log = function() {
1513     switch (this._s) {
1514     case 0:     return -Infinity;
1515     case -1: return NaN;
1516     default: // Fall through.
1517     }
1518 
1519     var l = this._d.length;
1520 
1521     if (l*BigInteger_base_log10 < 30) {
1522         return Math.log(this.valueOf());
1523     }
1524 
1525     var N = Math.ceil(30/BigInteger_base_log10);
1526     var firstNdigits = this._d.slice(l - N);
1527     return Math.log((new BigInteger(firstNdigits, 1, CONSTRUCT)).valueOf()) + (l - N) * Math.log(BigInteger_base);
1528 };
1529 
1530 /*
1531     Function: valueOf
1532     Convert a <BigInteger> to a native JavaScript integer.
1533 
1534     This is called automatically by JavaScipt to convert a <BigInteger> to a
1535     native value.
1536 
1537     Returns:
1538 
1539         > parseInt(this.toString(), 10)
1540 
1541     See Also:
1542 
1543         <toString>, <toJSValue>
1544 */
1545 BigInteger.prototype.valueOf = function() {
1546     return parseInt(this.toString(), 10);
1547 };
1548 
1549 /*
1550     Function: toJSValue
1551     Convert a <BigInteger> to a native JavaScript integer.
1552 
1553     This is the same as valueOf, but more explicitly named.
1554 
1555     Returns:
1556 
1557         > parseInt(this.toString(), 10)
1558 
1559     See Also:
1560 
1561         <toString>, <valueOf>
1562 */
1563 BigInteger.prototype.toJSValue = function() {
1564     return parseInt(this.toString(), 10);
1565 };
1566 
1567 var MAX_EXP = BigInteger(0x7FFFFFFF);
1568 // Constant: MAX_EXP
1569 // The largest exponent allowed in <pow> and <exp10> (0x7FFFFFFF or 2147483647).
1570 BigInteger.MAX_EXP = MAX_EXP;
1571 
1572 (function() {
1573     function makeUnary(fn) {
1574         return function(a) {
1575             return fn.call(BigInteger(a));
1576         };
1577     }
1578 
1579     function makeBinary(fn) {
1580         return function(a, b) {
1581             return fn.call(BigInteger(a), BigInteger(b));
1582         };
1583     }
1584 
1585     function makeTrinary(fn) {
1586         return function(a, b, c) {
1587             return fn.call(BigInteger(a), BigInteger(b), BigInteger(c));
1588         };
1589     }
1590 
1591     (function() {
1592         var i, fn;
1593         var unary = "toJSValue,isEven,isOdd,sign,isZero,isNegative,abs,isUnit,square,negate,isPositive,toString,next,prev,log".split(",");
1594         var binary = "compare,remainder,divRem,subtract,add,quotient,divide,multiply,pow,compareAbs".split(",");
1595         var trinary = ["modPow"];
1596 
1597         for (i = 0; i < unary.length; i++) {
1598             fn = unary[i];
1599             BigInteger[fn] = makeUnary(BigInteger.prototype[fn]);
1600         }
1601 
1602         for (i = 0; i < binary.length; i++) {
1603             fn = binary[i];
1604             BigInteger[fn] = makeBinary(BigInteger.prototype[fn]);
1605         }
1606 
1607         for (i = 0; i < trinary.length; i++) {
1608             fn = trinary[i];
1609             BigInteger[fn] = makeTrinary(BigInteger.prototype[fn]);
1610         }
1611 
1612         BigInteger.exp10 = function(x, n) {
1613             return BigInteger(x).exp10(n);
1614         };
1615     })();
1616 })();
1617 
1618 exports.BigInteger = BigInteger;
1619 })(typeof exports !== undefined ? exports : this);

 

 

 

 

 

javascript 大数值数据运算,布布扣,bubuko.com

javascript 大数值数据运算

上一篇:PhotoSwipe手机端图片弹出显示插件【使用笔记】


下一篇:“华尔街之狼”:ICO是“史上最大骗局”