Java的代理有两种:静态代理和动态代理,动态代理又分为 基于jdk的动态代理 和 基于cglib的动态代理 ,两者都是通过动态生成代理类的方法实现的,但是基于jdk的动态代理需要委托类实现接口,基于cglib的动态代理不要求委托类实现接口。
接下来主要分析一下基于jdk的动态代理的实现原理。
一 动态代理例子
首先来看一个动态代理的例子:
# 测试类,主要功能是生成代理类并调用代理方法 TargetFactory.java
public class TargetFactory { public static void main(String[] args) { System.getProperties().put("sun.misc.ProxyGenerator.saveGeneratedFiles", "true"); TargetFactory tf = new TargetFactory(); Target tt = new Target(); Display dy = (Display) tf.getInstance(tt, new InvokerHandler(tt)); try { dy.f(); } catch (Exception e) { e.printStackTrace(); } } public Object getInstance(Object target, InvocationHandler handler){ return Proxy.newProxyInstance(target.getClass().getClassLoader(), new Class<?>[]{Display.class},handler); } } # 接口 Display.java interface Display { public void f(); public void g(); } # 实现了接口的目标类 Target.java public class Target implements Display{ @Override public void f() { System.out.println("Targer f() method"); } @Override public void g() { System.out.println("Targer g() method");; } }
# 实现了InvocationHandler接口的代理类的调用处理类 InvokerHandler.java public class InvokerHandler implements InvocationHandler { private Object target; public InvokerHandler(Object t){ target = t; } @Override public Object invoke(Object proxy, Method method, Object[] args) throws Throwable { System.out.println("beforem invoke method"); method.invoke(target, args); System.out.println("after invoke method"); return null; } }
运行上面的例子,结果为:
beforem invoke method Targer f() method after invoke method
二 代理类分析
我们从生成的代理类入手来进行分析,代理类默认是只存在于内存中的,我们可以通过添加如下代码来将代理类存储在磁盘上:
System.getProperties().put("sun.misc.ProxyGenerator.saveGeneratedFiles", "true");
FAQ1:添加此代码后程序有时会抛出 java.lang.InternalError: I/O exception saving generated file: java.io.FileNotFoundException : test\java\dynamicProxy\$Proxy0.class (系统找不到指定的路径。)。这个问题不得不说一下代理类的生成路径。系统是根据接口的描述符来选择生成路径的,如果有一个接口的描述符都为public的,那么代理类就被放置在用户目录下面,可以通过System.getProperty("user.dir")来获取到。接口中只要有一个是非public的,那么代理类的放置路径就为System.getProperty("user.dir")+File.separator+该接口的包路径。谈到这里,我们可以想象一下如果有两个接口是非public的,而它们属于不同的包,那么将会抛出IllegalArgumentException的异常。
代理类的命名是 “$Proxy”(由Proxy类中的proxyClassNamePrefix字段指定的)+代理类的序号(Proxy类中的nextUniqueNumber字段,从0开始),考虑到多线程的问题在操作nextUniqueNumber时先要获取到nextUniqueNumberLock的对象锁。
获得了代理类的class文件后我们使用jd-gui(free for no commercial)来进行反编译获取到源码,本文的$Proxy0.class 反编译的结果如下
//代理类都继承 Proxy 类 并且实现代理接口Display public final class $Proxy0 extends Proxy implements Display { //构造函数的入参为 例子中InvokerHandler的实例 //也就是 Proxy.newProxyInstance(target.getClass().getClassLoader(), new Class<?>[]{Display.class},handler); 的入参 handler public $Proxy0(InvocationHandler paramInvocationHandler) throws { /*接着调用Proxy的构造函数,把handler赋值给Proxy类的h字段,下面注释为Proxy的构造函数 *protected Proxy(InvocationHandler h) { * this.h = h; *} */ super(paramInvocationHandler); } private static Method m1; private static Method m3; private static Method m4; private static Method m0; private static Method m2; static { try { //通过反射获取接口中的方法f() 和 g(),这就决定了委托类必须实现接口,不然的话没有办法通过反射来调用委托类中的方法 m3 = Class.forName("test.java.dynamicProxy.Display").getMethod("g", new Class[0]); m4 = Class.forName("test.java.dynamicProxy.Display").getMethod("f", new Class[0]); m0 = Class.forName("java.lang.Object").getMethod("hashCode", new Class[0]); m2 = Class.forName("java.lang.Object").getMethod("toString", new Class[0]); m1 = Class.forName("java.lang.Object").getMethod("equals", new Class[] { Class.forName("java.lang.Object") }); return; } catch (NoSuchMethodException localNoSuchMethodException) { throw new NoSuchMethodError(localNoSuchMethodException.getMessage()); } catch (ClassNotFoundException localClassNotFoundException) { throw new NoClassDefFoundError(localClassNotFoundException.getMessage()); } } //在调用代理类中的接口方法时,代理类会将此方法和方法的参数作为入参来调用paramInvocationHandler的invoke函数,在invoke函数中调用委托类中对应的函数 public final void g() throws { try { //m3代表的是g方法,null是g的入参,因为g没有入参所以为null this.h.invoke(this, m3, null); return; } catch (Error|RuntimeException localError) { throw localError; } catch (Throwable localThrowable) { throw newpublic final void f() throws { try { this.h.invoke(this, m4, null); return; } catch (Error|RuntimeException localError) { throw localError; } catch (Throwable localThrowable) { throw new UndeclaredThrowableException(localThrowable); } } public final boolean equals(Object paramObject) throws { try { return ((Boolean)this.h.invoke(this, m1, new Object[] { paramObject })).booleanValue(); } catch (Error|RuntimeException localError) { throw localError; } catch (Throwable localThrowable) { throw new UndeclaredThrowableException(localThrowable); } } public final int hashCode() throws { try { return ((Integer)this.h.invoke(this, m0, null)).intValue(); } catch (Error|RuntimeException localError) { throw localError; } catch (Throwable localThrowable) { throw new UndeclaredThrowableException(localThrowable); } } public final String toString() throws { try { return (String)this.h.invoke(this, m2, null); } catch (Error|RuntimeException localError) { throw localError; } catch (Throwable localThrowable) { throw new UndeclaredThrowableException(localThrowable); } } }
基于jdk动态代理所生成的代理类和静态代理类一样都要实现接口,动态代理类需要继承Proxy(不知道为何要继承此类)。动态代理invoke函数中的对于委托类的方法调用是反射调用,效率上比这静态代理要差一些。
在编码时,静态代理类需要用户实现每一个接口方法,而动态代理只需要实现 InvocationHandler 中的invoke函数,因此动态代理使得代码比较简洁,所有对method的预处理都在invoke函数中完成。
三 代理类的产生
上面使用反编译的手段来分析了代理类的源码,下面要介绍一下代理类到底是怎么生成的
1. Proxy.newProxyInstance方法
newProxyInstance 是 Proxy类中的静态方法,它的作用就是根据入参来返回一个代理类的实例,下面来介绍一下入参:
Proxy.newProxyInstance(target.getClass().getClassLoader(), new Class<?>[]{Display.class},handler);
target.getClass().getClassLoader():是用来加载代理类的class loader
new Class<?>[]{Display.class}:是需要代理的接口,一个代理类可以代理多个接口,所以这里是个数组
handler: 传递委托类方法调用的调用处理类,在例子一种对应的是InvokerHandler的实例
我们来看一下 newProxyInstance的源码:
public static Object newProxyInstance(ClassLoader loader, Class<?>[] interfaces, InvocationHandler h) throws IllegalArgumentException { if (h == null) { throw new NullPointerException(); } //生成代理类 Class cl = getProxyClass(loader, interfaces); try { //获取构造函数,生成并返回代理类的实例 //根据第二节中对生成代理类的分析,构造函数的参数类型为 { InvocationHandler.class } Constructor cons = cl.getConstructor(constructorParams); return (Object) cons.newInstance(new Object[] { h }); } catch (NoSuchMethodException e) { throw new InternalError(e.toString()); } catch (IllegalAccessException e) { throw new InternalError(e.toString()); } catch (InstantiationException e) { throw new InternalError(e.toString()); } catch (InvocationTargetException e) { throw new InternalError(e.toString()); } }
2. getProxyClass
这个函数主要实现了下列的功能:
- 对需要代理的接口进行合法性验证(接口对传入newProxyInstance的Class loader是否可见,是否是接口类型,接口去重)
在此只关注一下接口的去重。此函数中采用HashSet的方法来简单进行去重,代码如下:
Set interfaceSet = new HashSet();
if (interfaceSet.contains(interfaceClass)) {
throw new IllegalArgumentException(
"repeated interface: " + interfaceClass.getName());
}
- 使用本地缓存loaderToCache来缓存已经产生的代理类
先来看一下本地缓存的初始化,它采用WeakHashMap这个特殊的Map类型,关于WeakHashMap在此不再赘述
private static Map loaderToCache = new WeakHashMap();
loaderToCache 的类型是<ClassLoader,<Object,Class>>,涉及到缓存操作的代码如下,代码比较简单,又有完整的注释,这里不予过多分析,以免画蛇添足之嫌。
Map cache; synchronized (loaderToCache) { cache = (Map) loaderToCache.get(loader); if (cache == null) { cache = new HashMap(); loaderToCache.put(loader, cache); } /* * This mapping will remain valid for the duration of this * method, without further synchronization, because the mapping * will only be removed if the class loader becomes unreachable. */ } /* * Look up the list of interfaces in the proxy class cache using * the key. This lookup will result in one of three possible * kinds of values: * null, if there is currently no proxy class for the list of * interfaces in the class loader, * the pendingGenerationMarker object, if a proxy class for the * list of interfaces is currently being generated, * or a weak reference to a Class object, if a proxy class for * the list of interfaces has already been generated. */ synchronized (cache) { /* * Note that we need not worry about reaping the cache for * entries with cleared weak references because if a proxy class * has been garbage collected, its class loader will have been * garbage collected as well, so the entire cache will be reaped * from the loaderToCache map. */ do { Object value = cache.get(key); if (value instanceof Reference) { proxyClass = (Class) ((Reference) value).get(); } if (proxyClass != null) { // proxy class already generated: return it return proxyClass; } else if (value == pendingGenerationMarker) { // proxy class being generated: wait for it try { cache.wait(); } catch (InterruptedException e) { /* * The class generation that we are waiting for should * take a small, bounded time, so we can safely ignore * thread interrupts here. */ } continue; } else { /* * No proxy class for this list of interfaces has been * generated or is being generated, so we will go and * generate it now. Mark it as pending generation. */ cache.put(key, pendingGenerationMarker); break; } } while (true); }
- 产生缓存中没有的代理类,并将该类存入缓存
如果缓存中没有所需的代理类,则由下面的这个函数来根据需要代理的接口产生。
byte[] proxyClassFile = ProxyGenerator.generateProxyClass(proxyName, interfaces);
3. ProxyGenerator
这个类是jdk动态代理的核心类,class文件的生成就是在这个类中完成的,在分析这个类之前,首先来看一下class file的 格式,这里只简要的提一下,可以在jvm规范中找到详细的解释。
ClassFile { u4 magic; //此处必须为0xCAFEBABE u2 minor_version; u2 major_version; u2 constant_pool_count; cp_info constant_pool[constant_pool_count-1]; u2 access_flags; u2 this_class; u2 super_class; u2 interfaces_count; u2 interfaces[interfaces_count]; u2 fields_count; //代理类中的field info没有属性 field_info fields[fields_count]; u2 methods_count; method_info methods[methods_count];//代理类中的method info只有Code属性和Exceptions属性 u2 attributes_count; // 代理类没有属性,所以attributes_count=0 attribute_info attributes[attributes_count]; }
java class file中最复杂的就是各种各样的attribute,而在代理类中只存在两种属性"Code" 和 "Exceptions",由此可以看出,该类也是比较简单的。
constant_pool[constant_pool_count-1] 是class file中不可缺少的元素,这里需要提一下,在class file中引用constant_pool中的元素时下标是从1 开始的,比如constant_pool_count是39 那么只能使用constant_pool[1] --> constant_pool[38]的
元素。
在ProxyGenerator 中使用静态内部类ConstantPool来管理constant pool,在ConstantPool中使用private List<Entry> pool = new ArrayList<Entry>(32) 来存储constant pool entries,用private Map<Object,Short> map = new HashMap<Object,Short>(16) 来存储entries 与下标之间的对应关系,这样的设计避免了需要轮询pool来查找需要存入的条目是否已经存在了。
4. ProxyGenerator.generateClassFile
在ProxyGenerator中generateClassFile 是入口函数,该函数可以对照class file的结构来阅读。
private byte[] generateClassFile() { /* ============================================================ * Step 1: Assemble ProxyMethod objects for all methods to * generate proxy dispatching code for. */ /* * Record that proxy methods are needed for the hashCode, equals, * and toString methods of java.lang.Object. This is done before * the methods from the proxy interfaces so that the methods from * java.lang.Object take precedence over duplicate methods in the * proxy interfaces. */ /* hashCodeMethod equalsMethod toStringMethod 存在于每个生成的代理类中 * addProxyMethod 中会扫描每个接口中的方法,对于函数签名一致的方法则判断 * 抛出的异常类型是否一致,如果不一致且没有继承关系,则不抛出异常。如果不 * 一致但异常有继承关系的,则抛出子类的异常 * 例如 接口1中 void f() throws Exception * 接口2中 void f() throws IOException * 代理类中 void f() throws IOException */ addProxyMethod(hashCodeMethod, Object.class); addProxyMethod(equalsMethod, Object.class); addProxyMethod(toStringMethod, Object.class); /* * Now record all of the methods from the proxy interfaces, giving * earlier interfaces precedence over later ones with duplicate * methods. */ for (int i = 0; i < interfaces.length; i++) { Method[] methods = interfaces[i].getMethods(); for (int j = 0; j < methods.length; j++) { addProxyMethod(methods[j], interfaces[i]); } } /* * For each set of proxy methods with the same signature, * verify that the methods‘ return types are compatible. */ /*这里需要强调一下,签名一致的函数返回值类型不一样且没有继承关系,则是不兼容的 * 如果返回值类型不一致而返回值存在继承关系的,在代理类中返回值类型为子类 * 例如: 接口1 superclass f(); * 接口2 subclass f(); * 代理类中 subclass f(); 其中 subclass extends superclass */ for (List<ProxyMethod> sigmethods : proxyMethods.values()) { checkReturnTypes(sigmethods); } /* ============================================================ * Step 2: Assemble FieldInfo and MethodInfo structs for all of * fields and methods in the class we are generating. */ try { methods.add(generateConstructor());//生成构造函数的字节码 for (List<ProxyMethod> sigmethods : proxyMethods.values()) { for (ProxyMethod pm : sigmethods) { // add static field for method‘s Method object fields.add(new FieldInfo(pm.methodFieldName, "Ljava/lang/reflect/Method;", ACC_PRIVATE | ACC_STATIC)); // generate code for proxy method and add it //生成equals,toString,hashCode 和 接口方法的字节码 methods.add(pm.generateMethod()); } } //生成静态代码块的字节码 methods.add(generateStaticInitializer()); } catch (IOException e) { throw new InternalError("unexpected I/O Exception"); } if (methods.size() > 65535) { throw new IllegalArgumentException("method limit exceeded"); } if (fields.size() > 65535) { throw new IllegalArgumentException("field limit exceeded"); } /* ============================================================ * Step 3: Write the final class file. */ /* * Make sure that constant pool indexes are reserved for the * following items before starting to write the final class file. */ cp.getClass(dotToSlash(className)); cp.getClass(superclassName); for (int i = 0; i < interfaces.length; i++) { cp.getClass(dotToSlash(interfaces[i].getName())); } /* * Disallow new constant pool additions beyond this point, since * we are about to write the final constant pool table. */ cp.setReadOnly(); ByteArrayOutputStream bout = new ByteArrayOutputStream(); DataOutputStream dout = new DataOutputStream(bout); try { /* * Write all the items of the "ClassFile" structure. * See JVMS section 4.1. */ // u4 magic; dout.writeInt(0xCAFEBABE); // u2 minor_version; dout.writeShort(CLASSFILE_MINOR_VERSION); // u2 major_version; dout.writeShort(CLASSFILE_MAJOR_VERSION); cp.write(dout); // (write constant pool) // u2 access_flags; dout.writeShort(ACC_PUBLIC | ACC_FINAL | ACC_SUPER); // u2 this_class; dout.writeShort(cp.getClass(dotToSlash(className))); // u2 super_class; dout.writeShort(cp.getClass(superclassName)); // u2 interfaces_count; dout.writeShort(interfaces.length); // u2 interfaces[interfaces_count]; for (int i = 0; i < interfaces.length; i++) { dout.writeShort(cp.getClass( dotToSlash(interfaces[i].getName()))); } // u2 fields_count; dout.writeShort(fields.size()); // field_info fields[fields_count]; for (FieldInfo f : fields) { f.write(dout); } // u2 methods_count; dout.writeShort(methods.size()); // method_info methods[methods_count]; for (MethodInfo m : methods) { m.write(dout); } // u2 attributes_count; dout.writeShort(0); // (no ClassFile attributes for proxy classes) } catch (IOException e) { throw new InternalError("unexpected I/O Exception"); } return bout.toByteArray(); }