07 Spark RDD编程 综合实例 英文词频统计

1. 用Pyspark自主实现词频统计过程。

07 Spark RDD编程 综合实例 英文词频统计

 

 

2. 并比较不同计算框架下编程的优缺点、适用的场景。

–Python

–MapReduce

–Hive

–Spark

 

 

Mapreduce,它最本质的两个过程就是Map和Reduce,Map的应用在于我们需要数据一对一的元素的映射转换,比如说进行截取,进行过滤,或者任何的转换操作,这些一对一的元素转换就称作是Map;Reduce主要就是元素的聚合,就是多个元素对一个元素的聚合,比如求Sum等,这就是Reduce。

Mapreduce是Hadoop1.0的核心,Spark出现慢慢替代Mapreduce。那么为什么Mapreduce还在被使用呢?因为有很多现有的应用还依赖于它,它不是一个独立的存在,已经成为其他生态不可替代的部分,比如pig,hive等。

尽管MapReduce极大的简化了大数据分析,但是随着大数据需求和使用模式的扩大,用户的需求也越来越多:

1. 更复杂的多重处理需求(比如迭代计算, ML, Graph);

2. 低延迟的交互式查询需求(比如ad-hoc query)

而MapReduce计算模型的架构导致上述两类应用先天缓慢,用户迫切需要一种更快的计算模型,来补充MapReduce的先天不足。

Spark的出现就弥补了这些不足,我们来了解一些Spark的优势:

1.每一个作业独立调度,可以把所有的作业做一个图进行调度,各个作业之间相互依赖,在调度过程中一起调度,速度快。

2.所有过程都基于内存,所以通常也将Spark称作是基于内存的迭代式运算框架。

3.spark提供了更丰富的算子,让操作更方便。

4.更容易的API:支持Python,Scala和Java

其实spark里面也可以实现Mapreduce,但是这里它并不是算法,只是提供了map阶段和reduce阶段,但是在两个阶段提供了很多算法。如Map阶段的map, flatMap, filter, keyBy,Reduce阶段的reduceByKey, sortByKey, mean, gourpBy, sort等。

Hive算是大数据数据仓库的事实标准吧。Hive可以方法HDFS和Hbase上的数据,impala、spark sql、Presto完全能读取hive建立的数据仓库了的数据。一般情况在批处理任务中还在使用Hive,而在热查询做数据展示中大量使用impala、spark sql或Presto。

Hive提供三种访问接口:Cli,web Ui,HiveServer2。

上一篇:07 从RDD创建DataFrame


下一篇:Mybatis源码分析4--执行sql与参数处理