二叉排序树:BST: (Binary Sort(Search) Tree)

二叉排序树

先看一个需求

给你一个数列 (7, 3, 10, 12, 5, 1, 9),要求能够高效的完成对数据的查询和添加

 使用数组

数组未排序, 优点:直接在数组尾添加,速度快。 缺点:查找速度慢. [示意图]

数组排序,优点:可以使用二分查找,查找速度快,缺点:为了保证数组有序,在添加新数据时,找到插入位

置后,后面的数据需整体移动,速度慢。[示意图]

 使用链式存储-链表

不管链表是否有序,查找速度都慢,添加数据速度比数组快,不需要数据整体移动。[示意图]

 使用二叉排序树

二叉排序树介绍

二叉排序树:BST: (Binary Sort(Search) Tree), 对于二叉排序树的任何一个非叶子节点,要求左子节点的值比当

前节点的值小右子节点的值比当前节点的值大

特别说明:如果有相同的值,可以将该节点放在左子节点或右子节点

比如针对前面的数据 (7, 3, 10, 12, 5, 1, 9) ,对应的二叉排序树为:

二叉排序树:BST: (Binary Sort(Search) Tree)

二叉排序树创建和遍历

一个数组创建成对应的二叉排序树,并使用中序遍历二叉排序树,比如: 数组为 Array(7, 3, 10, 12, 5, 1, 9) , 创

建成对应的二叉排序树为 :(左子节点的值比当 前节点的值小右子节点的值比当前节点的值大。)

二叉排序树:BST: (Binary Sort(Search) Tree)

二叉排序树的删除

二叉排序树的删除情况比较复杂,有下面三种情况需要考虑

1) 删除叶子节点 (比如:2, 5, 9, 12)

2) 删除只有一颗子树的节点 (比如:1)

3) 删除有两颗子树的节点. (比如:7, 3,10 )

//对删除结点的各种情况的思路分析:

第一种情况:

删除叶子节点 (比如:2, 5, 9, 12)

思路

(1) 需求先去找到要删除的结点 targetNode

(2) 找到 targetNode 的 父结点 parent

(3) 确定 targetNode 是 parent 的左子结点 还是右子结点

(4) 根据前面的情况来对应删除

左子结点 parent.left = null

右子结点 parent.right = null;

第二种情况: 删除只有一颗子树的节点 比如 1

思路

(1) 需求先去找到要删除的结点 targetNode

(2) 找到 targetNode 的 父结点 parent

(3) 确定 targetNode 的子结点是左子结点还是右子结点

(4) targetNode 是 parent 的左子结点还是右子结点

(5) 如果 targetNode 有左子结点

  1. 1 如果 targetNode 是 parent 的左子结点

parent.left = targetNode.left;

5.2 如果 targetNode 是 parent 的右子结点

parent.right = targetNode.left;

(6) 如果 targetNode 有右子结点

6.1 如果 targetNode 是 parent 的左子结点

parent.left = targetNode.right;

6.2 如果 targetNode 是 parent 的右子结点

parent.right = targetNode.right

情况三 : 删除有两颗子树的节点. (比如:7, 3,10 )

思路

(1) 需求先去找到要删除的结点 targetNode

(2) 找到 targetNode 的 父结点 parent

(3) 从 targetNode 的右子树找到最小的结点

(4) 用一个临时变量,将 最小结点的值保存 temp = 11

(5) 删除该最小结点

(6) targetNode.value = temp



public class BinarySortTreeDemo {

	public static void main(String[] args) {
		int[] arr = {7, 3, 10, 12, 5, 1, 9, 2};
		BinarySortTree binarySortTree = new BinarySortTree();
		//循环的添加结点到二叉排序树
		for(int i = 0; i< arr.length; i++) {
			binarySortTree.add(new Node(arr[i]));
		}
		
		//中序遍历二叉排序树
		System.out.println("中序遍历二叉排序树~");
		binarySortTree.infixOrder(); // 1, 3, 5, 7, 9, 10, 12
		
		//测试一下删除叶子结点
	    
	   
	    binarySortTree.delNode(12);
	   
	 
	    binarySortTree.delNode(5);
	    binarySortTree.delNode(10);
	    binarySortTree.delNode(2);
	    binarySortTree.delNode(3);
		   
	    binarySortTree.delNode(9);
	    binarySortTree.delNode(1);
	    binarySortTree.delNode(7);
	    
		
		System.out.println("root=" + binarySortTree.getRoot());
		
		
		System.out.println("删除结点后");
		binarySortTree.infixOrder();
	}

}

//创建二叉排序树
class BinarySortTree {
	private Node root;
	
	
	
	
	public Node getRoot() {
		return root;
	}

	//查找要删除的结点
	public Node search(int value) {
		if(root == null) {
			return null;
		} else {
			return root.search(value);
		}
	}
	
	//查找父结点
	public Node searchParent(int value) {
		if(root == null) {
			return null;
		} else {
			return root.searchParent(value);
		}
	}
	
	//编写方法: 
	//1. 返回的 以node 为根结点的二叉排序树的最小结点的值
	//2. 删除node 为根结点的二叉排序树的最小结点
	/**
	 * 
	 * @param node 传入的结点(当做二叉排序树的根结点)
	 * @return 返回的 以node 为根结点的二叉排序树的最小结点的值
	 */
	public int delRightTreeMin(Node node) {
		Node target = node;
		//循环的查找左子节点,就会找到最小值
		while(target.left != null) {
			target = target.left;
		}
		//这时 target就指向了最小结点
		//删除最小结点
		delNode(target.value);
		return target.value;
	}
	
	
	//删除结点
	public void delNode(int value) {
		if(root == null) {
			return;
		}else {
			//1.需求先去找到要删除的结点  targetNode
			Node targetNode = search(value);
			//如果没有找到要删除的结点
			if(targetNode == null) {
				return;
			}
			//如果我们发现当前这颗二叉排序树只有一个结点
			if(root.left == null && root.right == null) {
				root = null;
				return;
			}
			
			//去找到targetNode的父结点
			Node parent = searchParent(value);
			//如果要删除的结点是叶子结点
			if(targetNode.left == null && targetNode.right == null) {
				//判断targetNode 是父结点的左子结点,还是右子结点
				if(parent.left != null && parent.left.value == value) { //是左子结点
					parent.left = null;
				} else if (parent.right != null && parent.right.value == value) {//是由子结点
					parent.right = null;
				}
			} else if (targetNode.left != null && targetNode.right != null) { //删除有两颗子树的节点
				int minVal = delRightTreeMin(targetNode.right);
				targetNode.value = minVal;
				
				
			} else { // 删除只有一颗子树的结点
				//如果要删除的结点有左子结点 
				if(targetNode.left != null) {
					if(parent != null) {
						//如果 targetNode 是 parent 的左子结点
						if(parent.left.value == value) {
							parent.left = targetNode.left;
						} else { //  targetNode 是 parent 的右子结点
							parent.right = targetNode.left;
						} 
					} else {
						root = targetNode.left;
					}
				} else { //如果要删除的结点有右子结点 
					if(parent != null) {
						//如果 targetNode 是 parent 的左子结点
						if(parent.left.value == value) {
							parent.left = targetNode.right;
						} else { //如果 targetNode 是 parent 的右子结点
							parent.right = targetNode.right;
						}
					} else {
						root = targetNode.right;
					}
				}
				
			}
			
		}
	}
	
	//添加结点的方法
	public void add(Node node) {
		if(root == null) {
			root = node;//如果root为空则直接让root指向node
		} else {
			root.add(node);
		}
	}
	//中序遍历
	public void infixOrder() {
		if(root != null) {
			root.infixOrder();
		} else {
			System.out.println("二叉排序树为空,不能遍历");
		}
	}
}

//创建Node结点
class Node {
	int value;
	Node left;
	Node right;
	public Node(int value) {
		
		this.value = value;
	}
	
	
	//查找要删除的结点
	/**
	 * 
	 * @param value 希望删除的结点的值
	 * @return 如果找到返回该结点,否则返回null
	 */
	public Node search(int value) {
		if(value == this.value) { //找到就是该结点
			return this;
		} else if(value < this.value) {//如果查找的值小于当前结点,向左子树递归查找
			//如果左子结点为空
			if(this.left  == null) {
				return null;
			}
			return this.left.search(value);
		} else { //如果查找的值不小于当前结点,向右子树递归查找
			if(this.right == null) {
				return null;
			}
			return this.right.search(value);
		}
		
	}
	//查找要删除结点的父结点
	/**
	 * 
	 * @param value 要找到的结点的值
	 * @return 返回的是要删除的结点的父结点,如果没有就返回null
	 */
	public Node searchParent(int value) {
		//如果当前结点就是要删除的结点的父结点,就返回
		if((this.left != null && this.left.value == value) || 
				(this.right != null && this.right.value == value)) {
			return this;
		} else {
			//如果查找的值小于当前结点的值, 并且当前结点的左子结点不为空
			if(value < this.value && this.left != null) {
				return this.left.searchParent(value); //向左子树递归查找
			} else if (value >= this.value && this.right != null) {
				return this.right.searchParent(value); //向右子树递归查找
			} else {
				return null; // 没有找到父结点
			}
		}
		
	}
	
	@Override
	public String toString() {
		return "Node [value=" + value + "]";
	}


	//添加结点的方法
	//递归的形式添加结点,注意需要满足二叉排序树的要求
	public void add(Node node) {
		if(node == null) {
			return;
		}
		
		//判断传入的结点的值,和当前子树的根结点的值关系
		if(node.value < this.value) {
			//如果当前结点左子结点为null
			if(this.left == null) {
				this.left = node;
			} else {
				//递归的向左子树添加
				this.left.add(node);
			}
		} else { //添加的结点的值大于 当前结点的值
			if(this.right == null) {
				this.right = node;
			} else {
				//递归的向右子树添加
				this.right.add(node);
			}
			
		}
	}
	
	//中序遍历
	public void infixOrder() {
		if(this.left != null) {
			this.left.infixOrder();
		}
		System.out.println(this);
		if(this.right != null) {
			this.right.infixOrder();
		}
	}
	
}

 

上一篇:Mac下的unity兼容问题,打开项目提示错误:!GetPersistentManager().IsStreamLoaded(assetPath)


下一篇:[Leetcode] 543. Diameter of Binary Tree_Easy Tag: DFS