二叉排序树
先看一个需求
给你一个数列 (7, 3, 10, 12, 5, 1, 9),要求能够高效的完成对数据的查询和添加
使用数组
数组未排序, 优点:直接在数组尾添加,速度快。 缺点:查找速度慢. [示意图]
数组排序,优点:可以使用二分查找,查找速度快,缺点:为了保证数组有序,在添加新数据时,找到插入位
置后,后面的数据需整体移动,速度慢。[示意图]
使用链式存储-链表
不管链表是否有序,查找速度都慢,添加数据速度比数组快,不需要数据整体移动。[示意图]
使用二叉排序树
二叉排序树介绍
二叉排序树:BST: (Binary Sort(Search) Tree), 对于二叉排序树的任何一个非叶子节点,要求左子节点的值比当
前节点的值小,右子节点的值比当前节点的值大。
特别说明:如果有相同的值,可以将该节点放在左子节点或右子节点
比如针对前面的数据 (7, 3, 10, 12, 5, 1, 9) ,对应的二叉排序树为:
二叉排序树创建和遍历
一个数组创建成对应的二叉排序树,并使用中序遍历二叉排序树,比如: 数组为 Array(7, 3, 10, 12, 5, 1, 9) , 创
建成对应的二叉排序树为 :(左子节点的值比当 前节点的值小,右子节点的值比当前节点的值大。)
二叉排序树的删除
二叉排序树的删除情况比较复杂,有下面三种情况需要考虑
1) 删除叶子节点 (比如:2, 5, 9, 12)
2) 删除只有一颗子树的节点 (比如:1)
3) 删除有两颗子树的节点. (比如:7, 3,10 )
//对删除结点的各种情况的思路分析: 第一种情况: 删除叶子节点 (比如:2, 5, 9, 12) 思路 (1) 需求先去找到要删除的结点 targetNode (2) 找到 targetNode 的 父结点 parent (3) 确定 targetNode 是 parent 的左子结点 还是右子结点 (4) 根据前面的情况来对应删除 左子结点 parent.left = null 右子结点 parent.right = null; 第二种情况: 删除只有一颗子树的节点 比如 1 思路 (1) 需求先去找到要删除的结点 targetNode (2) 找到 targetNode 的 父结点 parent (3) 确定 targetNode 的子结点是左子结点还是右子结点 (4) targetNode 是 parent 的左子结点还是右子结点 (5) 如果 targetNode 有左子结点
parent.left = targetNode.left; 5.2 如果 targetNode 是 parent 的右子结点 parent.right = targetNode.left; (6) 如果 targetNode 有右子结点 6.1 如果 targetNode 是 parent 的左子结点 parent.left = targetNode.right; 6.2 如果 targetNode 是 parent 的右子结点 parent.right = targetNode.right 情况三 : 删除有两颗子树的节点. (比如:7, 3,10 ) 思路 (1) 需求先去找到要删除的结点 targetNode (2) 找到 targetNode 的 父结点 parent (3) 从 targetNode 的右子树找到最小的结点 (4) 用一个临时变量,将 最小结点的值保存 temp = 11 (5) 删除该最小结点 (6) targetNode.value = temp |
public class BinarySortTreeDemo {
public static void main(String[] args) {
int[] arr = {7, 3, 10, 12, 5, 1, 9, 2};
BinarySortTree binarySortTree = new BinarySortTree();
//循环的添加结点到二叉排序树
for(int i = 0; i< arr.length; i++) {
binarySortTree.add(new Node(arr[i]));
}
//中序遍历二叉排序树
System.out.println("中序遍历二叉排序树~");
binarySortTree.infixOrder(); // 1, 3, 5, 7, 9, 10, 12
//测试一下删除叶子结点
binarySortTree.delNode(12);
binarySortTree.delNode(5);
binarySortTree.delNode(10);
binarySortTree.delNode(2);
binarySortTree.delNode(3);
binarySortTree.delNode(9);
binarySortTree.delNode(1);
binarySortTree.delNode(7);
System.out.println("root=" + binarySortTree.getRoot());
System.out.println("删除结点后");
binarySortTree.infixOrder();
}
}
//创建二叉排序树
class BinarySortTree {
private Node root;
public Node getRoot() {
return root;
}
//查找要删除的结点
public Node search(int value) {
if(root == null) {
return null;
} else {
return root.search(value);
}
}
//查找父结点
public Node searchParent(int value) {
if(root == null) {
return null;
} else {
return root.searchParent(value);
}
}
//编写方法:
//1. 返回的 以node 为根结点的二叉排序树的最小结点的值
//2. 删除node 为根结点的二叉排序树的最小结点
/**
*
* @param node 传入的结点(当做二叉排序树的根结点)
* @return 返回的 以node 为根结点的二叉排序树的最小结点的值
*/
public int delRightTreeMin(Node node) {
Node target = node;
//循环的查找左子节点,就会找到最小值
while(target.left != null) {
target = target.left;
}
//这时 target就指向了最小结点
//删除最小结点
delNode(target.value);
return target.value;
}
//删除结点
public void delNode(int value) {
if(root == null) {
return;
}else {
//1.需求先去找到要删除的结点 targetNode
Node targetNode = search(value);
//如果没有找到要删除的结点
if(targetNode == null) {
return;
}
//如果我们发现当前这颗二叉排序树只有一个结点
if(root.left == null && root.right == null) {
root = null;
return;
}
//去找到targetNode的父结点
Node parent = searchParent(value);
//如果要删除的结点是叶子结点
if(targetNode.left == null && targetNode.right == null) {
//判断targetNode 是父结点的左子结点,还是右子结点
if(parent.left != null && parent.left.value == value) { //是左子结点
parent.left = null;
} else if (parent.right != null && parent.right.value == value) {//是由子结点
parent.right = null;
}
} else if (targetNode.left != null && targetNode.right != null) { //删除有两颗子树的节点
int minVal = delRightTreeMin(targetNode.right);
targetNode.value = minVal;
} else { // 删除只有一颗子树的结点
//如果要删除的结点有左子结点
if(targetNode.left != null) {
if(parent != null) {
//如果 targetNode 是 parent 的左子结点
if(parent.left.value == value) {
parent.left = targetNode.left;
} else { // targetNode 是 parent 的右子结点
parent.right = targetNode.left;
}
} else {
root = targetNode.left;
}
} else { //如果要删除的结点有右子结点
if(parent != null) {
//如果 targetNode 是 parent 的左子结点
if(parent.left.value == value) {
parent.left = targetNode.right;
} else { //如果 targetNode 是 parent 的右子结点
parent.right = targetNode.right;
}
} else {
root = targetNode.right;
}
}
}
}
}
//添加结点的方法
public void add(Node node) {
if(root == null) {
root = node;//如果root为空则直接让root指向node
} else {
root.add(node);
}
}
//中序遍历
public void infixOrder() {
if(root != null) {
root.infixOrder();
} else {
System.out.println("二叉排序树为空,不能遍历");
}
}
}
//创建Node结点
class Node {
int value;
Node left;
Node right;
public Node(int value) {
this.value = value;
}
//查找要删除的结点
/**
*
* @param value 希望删除的结点的值
* @return 如果找到返回该结点,否则返回null
*/
public Node search(int value) {
if(value == this.value) { //找到就是该结点
return this;
} else if(value < this.value) {//如果查找的值小于当前结点,向左子树递归查找
//如果左子结点为空
if(this.left == null) {
return null;
}
return this.left.search(value);
} else { //如果查找的值不小于当前结点,向右子树递归查找
if(this.right == null) {
return null;
}
return this.right.search(value);
}
}
//查找要删除结点的父结点
/**
*
* @param value 要找到的结点的值
* @return 返回的是要删除的结点的父结点,如果没有就返回null
*/
public Node searchParent(int value) {
//如果当前结点就是要删除的结点的父结点,就返回
if((this.left != null && this.left.value == value) ||
(this.right != null && this.right.value == value)) {
return this;
} else {
//如果查找的值小于当前结点的值, 并且当前结点的左子结点不为空
if(value < this.value && this.left != null) {
return this.left.searchParent(value); //向左子树递归查找
} else if (value >= this.value && this.right != null) {
return this.right.searchParent(value); //向右子树递归查找
} else {
return null; // 没有找到父结点
}
}
}
@Override
public String toString() {
return "Node [value=" + value + "]";
}
//添加结点的方法
//递归的形式添加结点,注意需要满足二叉排序树的要求
public void add(Node node) {
if(node == null) {
return;
}
//判断传入的结点的值,和当前子树的根结点的值关系
if(node.value < this.value) {
//如果当前结点左子结点为null
if(this.left == null) {
this.left = node;
} else {
//递归的向左子树添加
this.left.add(node);
}
} else { //添加的结点的值大于 当前结点的值
if(this.right == null) {
this.right = node;
} else {
//递归的向右子树添加
this.right.add(node);
}
}
}
//中序遍历
public void infixOrder() {
if(this.left != null) {
this.left.infixOrder();
}
System.out.println(this);
if(this.right != null) {
this.right.infixOrder();
}
}
}