零基础数据挖掘组队学习第四次打卡

 

Task4    建模调参

  1. 线性回归模型:
    • 线性回归对于特征的要求;
    • 处理长尾分布;
    • 理解线性回归模型;
  2. 模型性能验证:
    • 评价函数与目标函数;
    • 交叉验证方法;
    • 留一验证方法;
    • 针对时间序列问题的验证;
    • 绘制学习率曲线;
    • 绘制验证曲线;
  3. 嵌入式特征选择:
    • Lasso回归;
    • Ridge回归;
    • 决策树;
  4. 模型对比:
    • 常用线性模型;
    • 常用非线性模型;
  5. 模型调参:
    • 贪心调参方法;
    • 网格调参方法;
    • 贝叶斯调参方法;

相关原理介绍与推荐

线性回归模型

https://zhuanlan.zhihu.com/p/49480391

决策树模型

https://zhuanlan.zhihu.com/p/65304798

GBDT模型

https://zhuanlan.zhihu.com/p/45145899

XGBoost模型

https://zhuanlan.zhihu.com/p/86816771

LightGBM模型

https://zhuanlan.zhihu.com/p/89360721

 

 

上一篇:软件开发项目技术方案


下一篇:MySql的事务隔离级别及相关知识