Non-decreasing Array (M)
题目
Given an array nums
with n
integers, your task is to check if it could become non-decreasing by modifying at most one element.
We define an array is non-decreasing if nums[i] <= nums[i + 1]
holds for every i
(0-based) such that (0 <= i <= n - 2
).
Example 1:
Input: nums = [4,2,3]
Output: true
Explanation: You could modify the first 4 to 1 to get a non-decreasing array.
Example 2:
Input: nums = [4,2,1]
Output: false
Explanation: You can't get a non-decreasing array by modify at most one element.
Constraints:
n == nums.length
1 <= n <= 10^4
-105 <= nums[i] <= 10^5
题意
给定一个数组,判断能否通过改变其中一个或零个数,使整个数组构成非递减序列。
思路
遍历数组,找到第一个i,使得 nums[i] > nums[i+1],这时我们尝试进行修复,有两种情况,要么改变nums[i],要么改变nums[i+1]:(1) i - 1 >= 0 且 nums[i-1] > nums[i+1],这时为了保证非递减,必须使 nums[i+1] = nums[i]; (2) i == 0 或者 nums[i-1] <= nums[i+1] 时,为了在之后的遍历中尽可能保证非递减,nums[i+1]必须尽可能的小,所以使 nums[i] = nums[i+1]。完成修复后,我们已经保证了子数组 [0 ~ i+1] 是一个非递减序列,且已经动用了唯一的修改机会,只要继续向后遍历判断是否仍存在 nums[j] > nums[j+1] 的情况即可。
代码实现
Java
class Solution {
public boolean checkPossibility(int[] nums) {
boolean found = false;
for (int i = 0; i + 1 < nums.length; i++) {
if (nums[i] > nums[i + 1]) {
if (found) return false;
found = true;
// 因为只有改变nums[i+1]才会影响之后的遍历,可以省略改变nums[i]的情况
if (i > 0 && nums[i - 1] > nums[i + 1]) nums[i + 1] = nums[i];
}
}
return true;
}
}