(x&y) + ((x^y)>>1)即x和y的算数平均值

(x&y) + ((x^y)>>1)相当于(x+y)/2

(x&y)+((x^y)>>1),把x和y里对应的每一位(指二进制位)都分成三类,每一类分别计算平均值,最后汇总。

其中,一类是x,y对应位都是1,用x&y计算其平均值;

一类是x,y中对应位有且只有一位是1,用(x^y)>>1计算其平均值;

还有一另是x,y中对应位均为0,无须计算。

下面我再分别说明一下前两种情况是怎样计算的:
x,y对应位均为1,相加后再除以2还是原来的数,如两个00001111相加后除以2仍得00001111,这是第一部分。

第二部分,对应位有且只有一位为1,用“异或”运算提取出来,然后>>1(右移一位,相当于除以2),即到到第二部分的平均值。

第三部分,对应位均为零,因为相加后再除以二还是0,所以不用计算。 三部分汇总之后就是(x&y)+((x^y)>>1)

顺便解释一下前面说到可以避免溢出。

假设x,y均为unsigned char型数据(0~255,占用一字节),显然,x,y的平均数也在0~255之间,但如果直接x+y可能会使结果大于255,这就产生溢出,虽然最终结果在255之内,但过程中需要额外处理溢出的那一位,在汇编中就需要考虑这种高位溢出的情况,如果(x&y)+((x^y)>>1)计算则不会。

上一篇:如何把JS对象转成数组


下一篇:linux C 刚初始化后的一个变量在调用一个静态库中函数后被异常修改为乱码