写屏障(write barrier)

笔者在之前讲解g1 youngGC源码的中提到过关于g1写屏障和Rset(记忆集合)等相关知识点,之前限于文章长度(ps:全部介绍完博客会比较长)跳过了这个部分只是简单介绍了下概念,今天我们来继续从源码出发,探究g1的写屏障和记忆集合等相关技术内幕。

一.写屏障(write barrier)
关于写屏障,其实要从垃圾回收的三色标记说起,网上关于三色标记的文章很多,具体说明也比较详细,笔者在这里就不在进行详细说明,本文的重点还是放在源码解析与阅读上。

在三色标记算法中,只有同时满足以下两种条件就会产生漏标的问题:

灰色对象断开了白色对象的引用(直接或间接的引用);即灰色对象原来成员变量的引用发生了变化。
黑色对象重新引用了该白色对象;即黑色对象成员变量增加了新的引用。
我们只要破坏其中一个条件就可以解决这个问题,而解决这个问题就需要用到读屏障和写屏障,在jvm的垃圾回收器中,zgc使用的是读屏障,笔者有篇相关博客专门介绍了zgc的技术内幕而我们现在说的g1则是使用的写屏障,准确的说是SATB+写屏障(cms用的是写屏障+增量更新)。

写屏障是在对象属性引用另一个对象的时候才会触发,我们先写一段这样的java代码:

public class Test {
public static void main(String[] args) {
A a = new A();
B b = new B();
//这里我们将A对象的两个属性以不同方式修改引用
//1.public修饰的b属性直接修改
//2.private修饰的c属性用set方法修改
a.b = b;
a.b = null;
a.setC(b);
a.setC(null);
}
}

public class A {

public B b;

private B c;

public void setC(B c) {
this.c = c;
}
}

public class B {

}
因为java是先编译成.class字节码文件,之后由jvm将字节码逐行进行解释执行(当然弱代码执行的次数达到一定阈值,也会将其编译成机器码,本文重点不在这里,笔者就不过多阐述)

我们将刚才写的代码编译成.class文件,用字节码反编译器查看下字节码:

A.class 的set方法

0 aload_0
1 aload_1
//我们看到这里调用了putfield字节码
2 putfield #2 <B.a : Ljava/lang/String;>
5 return

Test.class 的main方法

0 new #2 <A>
3 dup
4 invokespecial #3 <A.<init> : ()V>
7 astore_1
8 new #4 <B>
11 dup
12 invokespecial #5 <B.<init> : ()V>
15 astore_2
//这里是两个入栈操作,后面我们会讲到
16 aload_1
17 aload_2
//我们看到这里调用了putfield字节码
18 putfield #6 <A.b : LB;>
21 aload_1
22 aconst_null
//我们看到这里调用了putfield字节码
23 putfield #6 <A.b : LB;>
26 aload_1
27 aload_2
28 invokevirtual #7 <A.setC : (LB;)V>
31 aload_1
32 aconst_null
33 invokevirtual #7 <A.setC : (LB;)V>
36 return
由此可见putfield字节码命令就是我们这次查看源码的入口啦!

从jdk的源码中找到putfield的字节码命令,在templateTable.cpp中,这个文件是模板解释器,我们简单介绍下,模板解释器是字节码解释器(早期版本jdk的解释器)的优化,早期字节码解释器是逐条翻译,效率低下现在已经不用了,而模板解释器是将每一条字节码与一个模板函数(主要是汇编)关联,用模板函数直接生成机器码从而提高性能。

我们来看看putfield的定义:

void TemplateTable::initialize() {
......
//def方法是用来创建模板的,我们可以简单理解成会将字节码putfield和putfield模板进行关联
//当碰到putfield字节码,就会调用putfield函数模板
def(Bytecodes::_putfield, ubcp|____|clvm|____, vtos, vtos, putfield,f2_byte);

}
我们直接来看putfield函数模板:

//putfield模板
void TemplateTable::putfield(int byte_no) {
//第二个参数是是否是static属性
putfield_or_static(byte_no, false);
}
//我们看到这个方法里就由很多封装的汇编指令了,我们略过一些汇编指令,来看下写屏障的核心逻辑
void TemplateTable::putfield_or_static(int byte_no, bool is_static) {

......

//获取属性的地址(用对象和属性的偏移量封装成address)
const Address field(obj, off, Address::times_1);
......

// 对象类型
{
//这个方法会出栈一个对象引用,并将其放入rax寄存器(内存寄存器)中
//这里解释下,我们的例子中字节码是这样的
//aload_1
//aload_2
//putfield
//局部变量表中编号1是引用a, 编号2是引用b,都是引用类型,存的都是地址
//在执行aload_2前会把aload_1加载的a引用入栈
//在执行putfield前会把aload_2加载的b引用入栈
//所以这里第一次出栈是b的引用
__ pop(atos);
//第二次出栈是a的引用
if (!is_static) pop_and_check_object(obj);
//存储对象的方法,我们进去看下
do_oop_store(_masm, field, rax, _bs->kind(), false);
if (!is_static) www.wanjiashidai.com{
patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no);
}
//跳到结束
__ jmp(Done);
}
//后面是一些其他基本类型,这里就不进行展开
......
}
//这个方法逻辑还是比较清晰的
//这里注意obj是可以理解为a.b这个引用,后文会统一用obj代替a.b这个引用
//val也是指向B对象的引用
static void do_oop_store(InterpreterMacroAssembler* _masm,
Address obj,
Register val,
BarrierSet::Name barrier,
bool precise) {
//根据屏障类型判断
switch (barrier) {
//g1这里会走这个分支
case BarrierSet::G1SATBCT:
case BarrierSet::G1SATBCTLogging:
{
//这里判断如果obj不是属性,则直接将obj的值传输到rdx寄存器(本案例中不会进入这里)
if (obj.index() == noreg && obj.disp() == 0) {
if (obj.base() != rdx) {
__ movq(rdx, obj.base());
}
} else {
//这里会把传入的a引用地址传输到rdx寄存器
__ leaq(rdx, obj);
}
//写前屏障,主要是SATB处理
//这里的横线__是汇编器的别名,根据不同的系统会调用不同的汇编器
//本文我们只看64位linux的代码
//rdx和rbx都是内存寄存器
//rdx此时已经存储了obj的地址
__ g1_write_barrier_pre(rdx /* obj */,
rbx /* pre_val */,
r15_thread /* thread */,
r8 /* tmp */,
val != noreg /* tosca_live */,
false /* expand_call */);
//如果对象是null则进入这个方法,在a.b上存空值
if (val == noreg) {
__ store_heap_oop_null(Address(rdx, 0));
} else {
......
//把指向b对象的引用存到a.b上
//准确的说是把引用存到本例中A对象的b属性偏移量上
__ store_heap_oop(Address(rdx, 0), val);
//写后屏障
__ g1_write_barrier_post(rdx /* store_adr */,
new_val /* new_val */,
r15_thread /* thread */,
r8 /* tmp */,
rbx /* tmp2 */);
}
}
break;
//非g1会走这个分支,我们就不再展开
case BarrierSet::CardTableModRef:
case BarrierSet::CardTableExtension:
{
if (val == noreg) {
__ store_heap_oop_null(obj);
} else {
__ store_heap_oop(obj, val);
if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
__ store_check(obj.base());
} else {
__ leaq(rdx, obj);
__ store_check(rdx);
}
}
}
break;
......
}
这里涉及到的入栈出栈的知识点是——栈顶缓存,网上有许多关于这方面的文章,有兴趣的读者可以自行了解下,这里就不做过多介绍。

我们看到在引用对象的方法之前和之后都由屏障,类似切面,我们来看看这两个屏障方法:

//找到x86架构的汇编器文件macroAssembler_x86.cpp
//写前屏障方法
void MacroAssembler::g1_write_barrier_pre(Register obj,
Register pre_val,
Register thread,
Register tmp,
bool tosca_live,
bool expand_call) {
//前面很多封装的汇编指令我们忽略,会做一些检测
......
//如果obj不为空,我们就根据obj引用获取其之前引用的对象的地址
if (obj != noreg) {
load_heap_oop(pre_val, Address(obj, 0));
}
//这个命令其实是比较之前的对象是不是空值,如果是空值则不继续执行
cmpptr(pre_val, (int32_t) NULL_WORD);
jcc(Assembler::equal, done);
......
//这里是false
if (expand_call) {
LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
pass_arg1(this, thread);
pass_arg0(this, pre_val);
MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
} else {
//这里会用汇编指令调用SharedRuntime::g1_wb_pre这个方法
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
}
......
}
//真正的写前屏障方法,JRT_LEAF可以理解是一个定义方法的宏
JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
if (orig == NULL) {
assert(false, "should be optimized out");
return;
}
//将对象的指针加入satb标记队列
thread->satb_mark_queue().enqueue(orig);
JRT_END

//写后屏障方法
void MacroAssembler::g1_write_barrier_post(Register store_addr,
Register new_val,
Register thread,
Register tmp,
Register tmp2) {
#ifdef _LP64
assert(thread == r15_thread, "must be");
#endif // _LP64

Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
PtrQueue::byte_offset_of_index()));
Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
PtrQueue::byte_offset_of_buf()));

BarrierSet* bs = Universe::heap()->barrier_set();
CardTableModRefBS* ct = (CardTableModRefBS*)bs;
assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");

Label done;
Label runtime;

//下面几条命令涉及到汇编逻辑比较,有兴趣的读者可以自行查阅,笔者这里就不进行展开
//判断是否跨regions
//先将引用的地址放到r8寄存器(tmp参数上个方法传入的)中
//再将新对象的地址和r8中的地址进行异或运算,结果存入r8中
//之后将r8的结果逻辑右移LogOfHRGrainBytes位(region大小的log指数+1),并将移出的最后一位加入cf指示器
//最后判断cf中是0还是1即可判断store_addr与new_val两个地址之间是否相差一个region大小
//0即不相差,1即相差
movptr(tmp, store_addr);
xorptr(tmp, new_val);
shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
jcc(Assembler::equal, done);

//判断是否为空
cmpptr(new_val, (int32_t) NULL_WORD);
jcc(Assembler::equal, done);

const Register card_addr = tmp;
const Register cardtable = tmp2;
//将存储的地址赋值给card_addr变量
movptr(card_addr, store_addr);
//将地址逻辑右移card_shift个位,可以理解为计算出其所属card的index
shrptr(card_addr, CardTableModRefBS::card_shift);
//加载卡表数组的基址的偏移量到cardtable
movptr(cardtable, (intptr_t)ct->byte_map_base);
//加上卡表数组的基址偏移量即可算出card在card数组中的有效地址
addptr(card_addr, cardtable);
//判断是否是young区的卡,如果是则不继续执行
cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
jcc(Assembler::equal, done);

//判断是否已经是脏卡,如果是则不继续执行
cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
jcc(Assembler::equal, done);

//将card赋值脏卡
movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
......

//执行写后屏障方法
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);

......
}

//真正的写后屏障
JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
//将card加入dcq队列
thread->dirty_card_queue().enqueue(card_addr);
JRT_END

这里用到的汇编命令比较多,笔者将几步关键步骤进行了标注,如果有兴趣,读者可以自行了解下相关命令,这里就不进行过多讲解。

到这里我们都知道g1修改对象属性引用时会使用的两种写屏障,并且为了提高效率都是先将要处理的数据放到队列中:

1.写前屏障——处理SATB(本质是快照,用于解决并发标记时修改引用可能会造成漏标的问题),将修改前引用的对象的地址加入satb队列,待到gc并发标记的时候处理。(关于写前屏障本文不重点介绍,以后笔者会介绍GC相关的文章中再介绍)

2.写后屏障——找到对应的card标记为dirty_card,加入dirty_card队列

本文我们重点关注下写后屏障,通过上面的源码分析,我们已经看到被修改过引用所处的card都已经被标记为dirty_card,即将卡表数组(本质是字节数组,元素可以理解为是一个标志)中对对应元素进行修改为dirty_card。说到card(卡页),dirty_card(脏卡),我们不得不先从他们的起源card_table(卡表)说起。

二.卡表(card_table)
在写后屏障的源码中有一段关于card计算的汇编代码,可能比较难以理解,笔者在这里画个图来方便解释,通过这张图我们也可以理解卡表,卡页,脏卡的概念:

 

结合图和我们之前看的写屏障的源码,我们概括下卡表,卡页,脏卡还有写屏障的关系:

卡表(card_table)全局只有一个可以理解为是一个bitmap,并且其中每个元素即是卡页(card)与堆中的512字节内存相互映射,当这512个字节中的引用发生修改时,写屏障就会把这个卡页标记为脏卡(dirty_card)。

接下来我们看看卡表创建的源码:

//卡表相关类的初始化列表
CardTableModRefBS::CardTableModRefBS(MemRegion whole_heap,
int max_covered_regions):
ModRefBarrierSet(max_covered_regions),
_whole_heap(whole_heap),
_guard_index(cards_required(whole_heap.word_size()) - 1),
_last_valid_index(_guard_index - 1),
_page_size(os::vm_page_size()),
_byte_map_size(compute_byte_map_size())
{
.....
//申请一段内存空间,大小为_byte_map_size
//且没有传入映射内存映射的基础地址,即从随机地址映射
//底层会调内核mmap(),这里就不进行展开
ReservedSpace heap_rs(_byte_map_size, rs_align, false);
MemTracker::record_virtual_memory_type((address)heap_rs.base(), mtGC);
...
//赋值给卡表
_byte_map = (jbyte*) heap_rs.base();
//计算偏移量
byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
.....

}
网上许多文章会说卡表是在堆中的,然而从源码中我们可以看到严格来说并不是属于java_heap管理的,而是一段额外的数组进行管理。

我们再看看java_heap内存申请的代码:

//申请堆内存的方法,会在申请card_table之前申请
ReservedSpace Universe::reserve_heap(size_t heap_size, size_t alignment) {
......
//计算堆的地址
char* addr = Universe::preferred_heap_base(total_reserved, alignment, Universe::UnscaledNarrowOop);
//total_reserved是最大堆内存
//申请内存,这里会传入地址从特定地址开始申请,默认从0开始申请最大堆内存
ReservedHeapSpace total_rs(total_reserved, alignment, use_large_pages, addr);
.....
return total_rs;
}
//进入下面的初始化列表方法
ReservedHeapSpace::ReservedHeapSpace(size_t size, size_t alignment,
bool large, char* requested_address) :
//ReservedHeapSpace是ReservedSpace的子类底层还是会调用mmap()
ReservedSpace(size, alignment, large,
requested_address,
(UseCompressedOops && (Universe::narrow_oop_base() != NULL) &&
Universe::narrow_oop_use_implicit_null_checks()) ?
lcm(os::vm_page_size(), alignment) : 0) {
if (base() > 0) {
//注意这里标记的是mtJavaHeap,即为javaHeap申请的内存
MemTracker::record_virtual_memory_type((address)base(), mtJavaHeap);
}
protect_noaccess_prefix(size);
}
由于card_table在heap之后才会申请创建,且是随机映射,而heap是根据对应地址去映射,所以card_table并不是使用的heap空间。

三.记忆集合(Remembered Set)
了解了卡表和写屏障等相关知识,我们就可以继续看源码了,在应用中不免会存在跨代的引用关系,我们在youngGC时就不得不扫描老年代的region,甚至整个老年代,而老年代占堆的比例是相当大的,所以为了节省开销,增加效率就有了记忆集合(玩家时代:www.wanjiashidai.com),专门用来记录跨代引用,方便我们在GC的时候直接处理记忆集合从而避免遍历老年代,在每个region中都有一个记忆集合。

怎样才能完整的记录所有的跨代引用呢?再jvm中我们其实借助的是写屏障和卡表来记录,每次的引用修改都会执行我们的写屏障方法,而写屏障方法会把对应位置的卡页标记为脏卡,并加入脏卡队列中,这样所有的有效引用关关系都会在脏卡队列中,只要我们处理脏卡队列,就可以从中过滤出所有跨代引用。

脏卡队列一般是Refine线程异步处理,Refine线程中存在白,绿,黄,红四个标记,不同的标记处理脏卡队列的refine线程数不一样,当到达红标记时,Mutator线程(java应用线程)也参与处理(关于标记部分网上由许多文章讲的比较详细,笔者在这里就不过多阐述)。我们接着写屏障的源码继续看:

JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
//获取java线程中的dcq将卡页入列
//enqueue入列方法最终会调用脏卡队列的父类PtrQueue的入列方法enqueue
thread->dirty_card_queue().enqueue(card_addr);
JRT_END

//脏卡队列类:DirtyCardQueue 继承 PtrQueue
//脏卡队列集合:DirtyCardQueueSet 继承 PtrQueueSet
//PtrQueue的入列方法
void enqueue(void* ptr) {
if (!_active) return;
//我们直接看这个方法
else enqueue_known_active(ptr);
}
//PtrQueue(DirtyCardQueue)内部有个_buf可以理解为时一个数组,默认容量是256
void PtrQueue::enqueue_known_active(void* ptr) {
//_index是下标,与一般下标不一样的是只有初始化和_buf满时_index会为0
while (_index == 0) {
//这个方法只有在初始化和扩容的时候会进入
handle_zero_index();
}
//每入列一个元素_index会减少
_index -= oopSize;
_buf[byte_index_to_index((int)_index)] = ptr;
}
//我们看下handle_zero_index()方法
void PtrQueue::handle_zero_index() {
//判断是初始化还是扩容为null则为初始化
//true为扩容
if (_buf != NULL) {
......
//判断是否有锁,这里只有shared dirty card queue会是true,因为shared_dirty_card_queue可能会有
//多个线程操作,关于shared dirty card queue笔者在讲youngGC的文章中有介绍,这里就不再阐述
if (_lock) {
void** buf = _buf; // local pointer to completed buffer
_buf = NULL; // clear shared _buf field
locking_enqueue_completed_buffer(buf); // enqueue completed buffer
if (_buf != NULL) return;
} else {
//我们来看这里,写屏障会调用这个方法
if (qset()->process_or_enqueue_complete_buffer(_buf)) {
_sz = qset()->buffer_size();
_index = _sz;
return;
}
}
}
//初始化queue申请_buf,修改_index
_buf = qset()->allocate_buffer();
_sz = qset()->buffer_size();
_index = _sz;

}
//这里会调用PtrQueueSet的方法
//每个java线程都有自己的DirtyCardQueue(PtrQueue)
//所有的DirtyCardQueue都关联一个全局DirtyCardQueueSet(PtrQueueSet)
bool PtrQueueSet::process_or_enqueue_complete_buffer(void** buf) {
//判断是否是java线程
if (Thread::current()->is_Java_thread()) {
//如果是java线程判断是否到达红标记(_max_completed_queue即red标记,在DirtyCardQueueSet初始化时会传入)
if (_max_completed_queue == 0 || _max_completed_queue > 0 &&
_n_completed_buffers >= _max_completed_queue + _completed_queue_padding) {
//达到红标记则自己处理
bool b = mut_process_buffer(buf);
if (b) {
return true;
}
}
}
//这个方法最后会将满的_buf加入DirtyCardQueueSet,自己再重新申请一个buf
enqueue_complete_buffer(buf);
return false;
}
这里我们稍微解释下DirtyCardQueue和DirtyCardQueueSet,每个java线程都有一个私有的DirtyCardQueue(PtrQueue),所有的DirtyCardQueue都关联一个全局DirtyCardQueueSet(PtrQueueSet),每个DirtyCardQueue默认大小为256,当一个DirtyCardQueue满了之后会将其中满的数组(_buf)添加到DirtyCardQueueSet中,并为DirtyCardQueue重新申请一个新的数组(_buf),关于这方面的知识笔者在之前将youngGC的文章也有过介绍,有兴趣的读者也可以看下。

其实Mutator线程(java应用线程)和Refine线程处理脏卡队列的最终方法都是一样的,只不过调用过程不一样,我们继续看下Mutator线程(java应用线程):

bool DirtyCardQueueSet::mut_process_buffer(void** buf) {
bool already_claimed = false;
//获取当前java线程
JavaThread* thread = JavaThread::current();
//获取线程的par_id
int worker_i = thread->get_claimed_par_id();
//如果worker_i不为-1就证明线程已经申请过par_id
if (worker_i != -1) {
already_claimed = true;
} else {
//否则重新获取个par_id
worker_i = _free_ids->claim_par_id();
//存储par_id
thread->set_claimed_par_id(worker_i);
}

bool b = false;
if (worker_i != -1) {
//这是处理脏卡队列的核心方法
//_closure参数是一个迭代器RefineCardTableEntryClosure
//buf是之前传入的脏卡队列中的数组
b = DirtyCardQueue::apply_closure_to_buffer(_closure, buf, 0,
_sz, true, worker_i);
if (b) Atomic::inc(&_processed_buffers_mut);
//如果是本次调用申请的par_id则要归还
if (!already_claimed) {
// 归还par_id
_free_ids->release_par_id(worker_i);
//同时将线程par_id设置为-1
thread->set_claimed_par_id(-1);
}

 

写屏障(write barrier)

上一篇:【*狂魔】WeChatAPI 系统架构详解


下一篇:CSS预处理器实践之Sass、Less大比拼[转]