Max Sum
Time Limit: 2000/1000 MS (Java/Others) Memory
Limit: 65536/32768 K (Java/Others)
Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4 Case 2: 7 1 6
题意:求最大连续和,并输出该连续和的起始、结尾位置
#include <iostream> #include <algorithm> using namespace std; const int maxn=100010; int a,b,dp[maxn],pre[maxn]; int main() { int m,n,T,cas; cin>>T; for(cas=1;cas<=T;cas++) { cout<<"Case "<<cas<<‘:‘<<endl; cin>>n; cin>>dp[1]; m=pre[1]=1; for(int i=2; i<=n; i++ ) { cin>>a; if(dp[i-1]>=0)//注意这里是大于‘等于‘0; { dp[i]=a+dp[i-1]; pre[i]=pre[i-1]; } else dp[i]=a,pre[i]=i; if( dp[i] > dp[m] ) m=i;//m保存当前最大连续和的下标 } cout<<dp[m]<<‘ ‘<<pre[m]<<‘ ‘<<m<<endl; if(cas!=T) cout<<endl; } return 0; }