Max Sum Plus Plus
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 14654 Accepted Submission(s): 4778
Problem Description
Now I think you have got an AC in Ignatius.L‘s "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jxor ix ≤ jy ≤ jx is not allowed).
But I`m lazy, I don‘t want to write a special-judge module, so you don‘t have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jxor ix ≤ jy ≤ jx is not allowed).
But I`m lazy, I don‘t want to write a special-judge module, so you don‘t have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
Process to the end of file.
Process to the end of file.
Output
Output the maximal summation described above in one line.
Sample Input
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
Sample Output
6 8HintHuge input, scanf and dynamic programming is recommended.
题目大意:设输入的数组为a[1...n],从中找出m个连续的段,使得这几个段的和为最大。
解题思路:dp[i][j]表示前j个数中取i个段的和的最大值,其中最后一个段包含a[j]。当然我们需要开的数组可能会爆内存,dp[10^6][m],m给多大我们是不知道的。如果是10的话根本开不了。我们先找到状态转移方程:
dp[i][j]=max{dp[i][j-1],max{dp[i-1][t]}} +a[j] 1=<t<=j-1
我们计算dp[i][j]的时候只会用到dp[i-1][t]中的最大值,因此我们可以用一个last数组将他们保存。
于是状态转移方程转化为:
dp[j]=max(dp[j-1],last[j-1])+a[j].
当然last需要随时更新。
但是分析数据
应该是要用long long的?最大值是3*10^10,但是会超时,纠结了一个小时
求路过的大神帮忙看看。。
题目地址:Max Sum Plus Plus
AC代码:
#include<iostream> #include<cstdio> #include<cstring> using namespace std; const int maxn = 1000005; //dp[i][j]=max(dp[i][j-1],dp[i-1][t])+a[j] (1<=t<=j-1) int a[maxn]; int dp[maxn]; int last[maxn]; int main() { int n,m; int i,j; while(~scanf("%d%d",&m,&n)) { for(i=1;i<=n;i++) scanf("%d",&a[i]); for(i=0;i<=1e6;i++) dp[i]=last[i]=0; int ma; for(i=1;i<=m;i++) { ma=-1e9; //更新dp[i-1][t](1<=t<=j-1)即last的最大值 for(j=i;j<=n;j++) { if(dp[j-1]>last[j-1]) dp[j]=dp[j-1]+a[j]; else dp[j]=last[j-1]+a[j]; last[j-1]=ma; if(dp[j]>ma) ma=dp[j]; } } printf("%d\n",ma); } return 0; } /* 1 3 1 2 3 2 6 -1 4 -2 3 -2 3 */