【学习opencv第七篇】图像的阈值化

图像阈值化的基本思想是,给定一个数组和一个阈值,然后根据数组中每个元素是低于还是高于阈值而进行一些处理。

cvThreshold()函数如下:

double cvThreshold(
CvArr* src,
CvArr* dst,
double threshold,
double max_value,
int threshold_type
)

cvShold函数只能处理8位或者浮点灰度图像,目标图像必须与源图像一致,或者为8为图像 。

实现阈值化的代码如下:

#include "stdafx.h"
#include <highgui.h>
#include <math.h>
#include <cv.h>
using namespace std;
int main()
{
IplImage* sourceImage;
IplImage* dstImage;
if(!(sourceImage=cvLoadImage("Hough.jpg")))
return -1;
dstImage=cvCreateImage(cvGetSize(sourceImage),sourceImage->depth,1); IplImage* r=cvCreateImage(cvGetSize(sourceImage),IPL_DEPTH_8U,1);
IplImage* g=cvCreateImage(cvGetSize(sourceImage),IPL_DEPTH_8U,1);
IplImage* b=cvCreateImage(cvGetSize(sourceImage),IPL_DEPTH_8U,1);
IplImage* tempImage=cvCreateImage(cvGetSize(sourceImage),IPL_DEPTH_8U,1);
cvSplit(sourceImage,r,g,b,NULL); cvAddWeighted(r,1./3.,g,1./3.,0.0,tempImage);
cvAddWeighted(tempImage,1,b,1./3.,0.0,tempImage);
cvThreshold(tempImage,dstImage,100,255,CV_THRESH_BINARY);
//对于大于100的设为255
cvNamedWindow("sourceImage");
cvNamedWindow("dstImage");
cvShowImage("sourceImage",sourceImage);
cvShowImage("dstImage",dstImage); cvWaitKey(-1);
cvReleaseImage(&r);
cvReleaseImage(&g);
cvReleaseImage(&b);
cvDestroyWindow("sourceImage");
cvDestroyWindow("dstImage"); cvReleaseImage(&sourceImage);
cvReleaseImage(&dstImage);
return 0;
}

运行结果:

【学习opencv第七篇】图像的阈值化

在自适应阈值中,阈值本身就是一个变量,实现自适应阈值的代码如下:

#include "stdafx.h"
#include <highgui.h>
#include <math.h>
#include <cv.h>
int main()
{
IplImage* sourceImage; //直接以灰度图像载入
if(!(sourceImage=cvLoadImage("Hough.jpg",CV_LOAD_IMAGE_GRAYSCALE)))
return -1;
IplImage* dstImage=cvCreateImage(cvGetSize(sourceImage),IPL_DEPTH_8U,1); //这个函数只能处理单通道图像或者8位图像,并且要求源图像 与目标图像不能为同一个图像
cvAdaptiveThreshold(
sourceImage,
dstImage,
255, //max_val
CV_ADAPTIVE_THRESH_MEAN_C,
CV_THRESH_BINARY,
3, //block_size
5 //offset
);
cvNamedWindow("AdaptiveThreshold",0);
cvShowImage("AdaptiveThreshold",dstImage); //单一阈值
IplImage* dstImage2=cvCreateImage(cvGetSize(sourceImage),IPL_DEPTH_8U,1);
cvThreshold(sourceImage,dstImage2,100,255,CV_THRESH_BINARY); cvNamedWindow("sourceImage",0);
cvNamedWindow("Threshold",0);
cvShowImage("sourceImage",sourceImage);
cvShowImage("Threshold",dstImage2); cvWaitKey(-1); //释放资源
cvDestroyWindow("sourceImage");
cvDestroyWindow("Threshold");
cvDestroyWindow("AdaptiveThreshold");
cvReleaseImage(&sourceImage);
cvReleaseImage(&dstImage);
cvReleaseImage(&dstImage2);
return 0;
}

运行结果:

【学习opencv第七篇】图像的阈值化

Reference《学习opencv》

上一篇:【Git使用详解】Egit的常用操作详解


下一篇:opencv学习之路(13)、图像阈值化threshold