《统计学习方法》第5章_决策树

  • 书中例题5.1
# encoding:utf-8
import numpy as np
import pandas as pd
from math import log


def create_data():
    datasets = [['青年', '否', '否', '一般', '否'],
                ['青年', '否', '否', '好', '否'],
                ['青年', '是', '否', '好', '是'],
                ['青年', '是', '是', '一般', '是'],
                ['青年', '否', '否', '一般', '否'],
                ['中年', '否', '否', '一般', '否'],
                ['中年', '否', '否', '好', '否'],
                ['中年', '是', '是', '好', '是'],
                ['中年', '否', '是', '非常好', '是'],
                ['中年', '否', '是', '非常好', '是'],
                ['老年', '否', '是', '非常好', '是'],
                ['老年', '否', '是', '好', '是'],
                ['老年', '是', '否', '好', '是'],
                ['老年', '是', '否', '非常好', '是'],
                ['老年', '否', '否', '一般', '否']
    ]

    labels = [u'年龄', u'有工作', u'有自己的房子', u'信贷情况', u'类别']
    return datasets, labels


"""熵"""
def calc_ent(datasets):
    data_length = len(datasets)
    label_count = {}
    for i in range(data_length):
        label = datasets[i][-1]
        if label not in label_count:
            label_count[label] = 0
        label_count[label] += 1
    ent = -sum([(p / data_length) * log(p / data_length, 2) for p in label_count.values()])
    return ent


"""经验条件熵"""
def cond_ent(datasets, axis=0):
    data_length = len(datasets)
    feature_sets = {}
    for i in range(data_length):
        feature = datasets[i][axis]
        if feature not in feature_sets:
            feature_sets[feature] = []
        feature_sets[feature].append(datasets[i])
    cond_ent = sum([(len(p) / data_length) * calc_ent(p) for p in feature_sets.values()])
    return cond_ent


"""信息增益"""
def info_gain(ent, cond_ent):
    return ent - cond_ent


def info_gain_train(datasets):
    count = len(datasets[0]) - 1
    ent = calc_ent(datasets)
    best_feature = []
    for c in range(count):
        c_info_gain = info_gain(ent, cond_ent(datasets, axis=c))
        best_feature.append((c, c_info_gain))
        print('特征({}) - info_gain - {:.3f}'.format(labels[c], c_info_gain))
    """比较大小"""
    best = max(best_feature, key=lambda x: x[-1])
    return '特征({})的信息增益最大,选择为根结点特征'.format(labels[best[0]])


"""生成数据集以及每列元素名称"""
datasets, labels = create_data()
"""设定数据集的格式"""
train_data = pd.DataFrame(datasets, columns=labels)

# list = np.array(datasets)
# for i in range(len(list)):
#     print(list[i])

info_gain_train(np.array(datasets))
  • scikit-learn实例
# encoding:utf-8
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import export_graphviz
import graphviz
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
"""数据"""
def create_data():
    iris = load_iris()
    df = pd.DataFrame(iris.data, columns=iris.feature_names)
    df['label'] = iris.target
    df.columns = [
        'sepal length', 'sepal width', 'petal length', 'petal width', 'label'
    ]
    data = np.array(df.iloc[:100, [0, 1, -1]])
    # print(data)
    return data[:, :2], data[:, -1]


x, y = create_data()
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3)

clf = DecisionTreeClassifier()
clf.fit(x_train, y_train)

clf.score(x_test, y_test)

tree_pic = export_graphviz(clf, out_file="mytree.pdf")
with open("mytree.pdf") as f:
    dot_graph = f.read()

graphviz.Source(dot_graph)
  • 利用ID3算法生成决策树(例5.3)
# encoding:utf-8
import numpy as np
import pandas as pd
from math import log
"""定义结点类 二叉树"""
class Node:
    def __init__(self, root=True, label=None, feature_name=None, feature=None):
        self.root = root
        self.label = label
        self.feature_name = feature_name
        self.feature = feature
        self.tree = {}
        self.result = {
            'label': self.label,
            'feature': self.feature,
            'tree': self.tree
        }

    def __repr__(self):
        return '{}'.format(self.result)

    def add_node(self, val, node):
        self.tree[val] = node

    def predict(self, features):
        if self.root is True:
            return self.label
        return self.tree[features[self.feature]].predict(features)


class DTree:
    def __init__(self, epsilon=0.1):
        self.epsilon = epsilon
        self.tree = {}

    """熵"""
    @staticmethod
    def calc_ent(datasets):
        data_length = len(datasets)
        label_count = {}
        for i in range(data_length):
            label = datasets[i][-1]
            if label not in label_count:
                label_count[label] = 0
            label_count[label] += 1
        ent = -sum([(p / data_length) * log(p / data_length, 2) for p in label_count.values()])
        return ent

    """经验条件熵"""
    def cond_ent(self, datasets, axis=0):
        data_length = len(datasets)
        feature_sets = {}
        for i in range(data_length):
            feature = datasets[i][axis]
            if feature not in feature_sets:
                feature_sets[feature] = []
            feature_sets[feature].append(datasets[i])
        cond_ent = sum([(len(p) / data_length) * self.calc_ent(p) for p in feature_sets.values()])
        return cond_ent

    """信息增益"""
    @staticmethod
    def info_gain(ent, cond_ent):
        return ent - cond_ent

    def info_gain_train(self, datasets):
        count = len(datasets[0]) - 1
        ent = self.calc_ent(datasets)
        best_feature = []
        for c in range(count):
            c_info_gain = self.info_gain(ent, self.cond_ent(datasets, axis=c))
            best_feature.append((c, c_info_gain))
        """比较大小"""
        best = max(best_feature, key=lambda x: x[-1])
        return best

    def train(self, train_data):
        """
            input:数据集D(DataFrame格式),特征集A,阈值eta
            output:决策树
        """
        _, y_train, features = train_data.iloc[:, :-1], train_data.iloc[:, -1], train_data.columns[:-1]

        """1 若D中实例属于同一类Ck,则T为单结点树,并将类Ck作为结点的类标记,返回T"""
        if len(y_train.value_counts()) == 1:
            return Node(root=True, label=y_train.iloc[0])

        """2 若A为空,则T为单结点树,将D中实例数最大的类Ck作为该结点的类标记,返回T"""
        if len(features) == 0:
            return Node(
                root=True,
                label=y_train.value_counts().sort_values(ascending=False).index[0])

        """3 计算最大信息增益,同5.1,Ag为信息增益最大的特征"""
        max_feature, max_info_gain = self.info_gain_train(np.array(train_data))
        max_feature_name = features[max_feature]

        """4 Ag的信息增益小于阈值eta,则置T为单结点树,并将D中实例数最大的类Ck作为该结点的类标记,返回T"""
        if max_info_gain < self.epsilon:
            return Node(
                root=True,
                label=y_train.value_counts().sort_values(ascending=False).index[0])

        """5 构建Ag子集"""
        node_tree = Node(
            root=False,
            feature_name=max_feature_name,
            feature=max_feature
        )
        feature_list = train_data[max_feature_name].value_counts().index
        for f in feature_list:
            sub_train_df = train_data.loc[train_data[max_feature_name] == f].drop([max_feature_name], axis=1)
            """6 递归生成树"""
            sub_tree = self.train(sub_train_df)
            node_tree.add_node(f, sub_tree)
        return node_tree

    def fit(self, train_data):
        self.tree = self.train(train_data)
        return self.tree

    def predict(self, x_test):
        return self.tree.predict(x_test)


def create_data():
    datasets = [['青年', '否', '否', '一般', '否'],
               ['青年', '否', '否', '好', '否'],
               ['青年', '是', '否', '好', '是'],
               ['青年', '是', '是', '一般', '是'],
               ['青年', '否', '否', '一般', '否'],
               ['中年', '否', '否', '一般', '否'],
               ['中年', '否', '否', '好', '否'],
               ['中年', '是', '是', '好', '是'],
               ['中年', '否', '是', '非常好', '是'],
               ['中年', '否', '是', '非常好', '是'],
               ['老年', '否', '是', '非常好', '是'],
               ['老年', '否', '是', '好', '是'],
               ['老年', '是', '否', '好', '是'],
               ['老年', '是', '否', '非常好', '是'],
               ['老年', '否', '否', '一般', '否'],
               ]
    labels = [u'年龄', u'有工作', u'有自己的房子', u'信贷情况', u'类别']
    # 返回数据集和每个维度的名称
    return datasets, labels


datasets, labels = create_data()
data_df = pd.DataFrame(datasets, columns=labels)
dt = DTree()
tree = dt.fit(data_df)
print(dt.predict(['老年', '否', '否', '一般']))
上一篇:存储过程分页以及参数拼接sql语句、C#调用存储过程


下一篇:List集合分页