参考
Flow-code: 将flo光流文件转换为png图片
基于光流warp的temporal loss增加视频分割的连续性
Pytorch-pwc
Flow-code
- 在 http://vision.middlebury.edu/flow/submit/ 下载flow-code.zip
- 解压到linux中flow-code文件夹下执行以下命令:
cd imageLib
make
cd ..
make
./colortest 10 colors.png *//如果有图片colors.png出现就为成功*
有可能会报错缺失'png.h',此时执行如下命令:
sudo apt-get install libpng-dev
此处来源:fatal error: png.h: No such file or directory
3.转化自己图片:
单张图片转化
在flow-code 文件夹下执行并建立other文件夹放入out.flo文件:
./color_flow ./other/out.flo ./out.png
得到结果。
visflow.py
import numpy as np
import os
import glob
import imageio
__all__ = ['load_flow', 'save_flow', 'vis_flow']
def load_flow(path):
with open(path, 'rb') as f:
magic = float(np.fromfile(f, np.float32, count = 1)[0])
if magic == 202021.25:
w, h = np.fromfile(f, np.int32, count = 1)[0], np.fromfile(f, np.int32, count = 1)[0]
data = np.fromfile(f, np.float32, count = h*w*2)
data.resize((h, w, 2))
return data
return None
def save_flow(path, flow):
magic = np.array([202021.25], np.float32)
h, w = flow.shape[:2] # 注意对应!!!
h, w = np.array([h], np.int32), np.array([w], np.int32)
with open(path, 'wb') as f:
magic.tofile(f); w.tofile(f); h.tofile(f); flow.tofile(f)
import cv2
import sys
import numpy as np
import argparse
def makeColorwheel():
# color encoding scheme
# adapted from the color circle idea described at
# http://members.shaw.ca/quadibloc/other/colint.htm
RY = 15
YG = 6
GC = 4
CB = 11
BM = 13
MR = 6
ncols = RY + YG + GC + CB + BM + MR
colorwheel = np.zeros([ncols, 3]) # r g b
col = 0
#RY
colorwheel[0:RY, 0] = 255
colorwheel[0:RY, 1] = np.floor(255*np.arange(0, RY, 1)/RY)
col += RY
#YG
colorwheel[col:YG+col, 0]= 255 - np.floor(255*np.arange(0, YG, 1)/YG)
colorwheel[col:YG+col, 1] = 255;
col += YG;
#GC
colorwheel[col:GC+col, 1]= 255
colorwheel[col:GC+col, 2] = np.floor(255*np.arange(0, GC, 1)/GC)
col += GC;
#CB
colorwheel[col:CB+col, 1]= 255 - np.floor(255*np.arange(0, CB, 1)/CB)
colorwheel[col:CB+col, 2] = 255
col += CB;
#BM
colorwheel[col:BM+col, 2]= 255
colorwheel[col:BM+col, 0] = np.floor(255*np.arange(0, BM, 1)/BM)
col += BM;
#MR
colorwheel[col:MR+col, 2]= 255 - np.floor(255*np.arange(0, MR, 1)/MR)
colorwheel[col:MR+col, 0] = 255
return colorwheel
def computeColor(u, v):
colorwheel = makeColorwheel();
nan_u = np.isnan(u)
nan_v = np.isnan(v)
nan_u = np.where(nan_u)
nan_v = np.where(nan_v)
u[nan_u] = 0
u[nan_v] = 0
v[nan_u] = 0
v[nan_v] = 0
ncols = colorwheel.shape[0]
radius = np.sqrt(u**2 + v**2)
a = np.arctan2(-v, -u) / np.pi
fk = (a+1) /2 * (ncols-1) # -1~1 maped to 1~ncols
k0 = fk.astype(np.uint8) # 1, 2, ..., ncols
k1 = k0+1
k1[k1 == ncols] = 0
f = fk - k0
img = np.empty([k1.shape[0], k1.shape[1],3])
ncolors = colorwheel.shape[1]
for i in range(ncolors):
tmp = colorwheel[:,i]
col0 = tmp[k0]/255
col1 = tmp[k1]/255
col = (1-f)*col0 + f*col1
idx = radius <= 1
col[idx] = 1 - radius[idx]*(1-col[idx]) # increase saturation with radius
col[~idx] *= 0.75 # out of range
img[:,:,2-i] = np.floor(255*col).astype(np.uint8)
return img.astype(np.uint8)
def vis_flow(flow):
eps = sys.float_info.epsilon
UNKNOWN_FLOW_THRESH = 1e9
UNKNOWN_FLOW = 1e10
u = flow[:,:,0]
v = flow[:,:,1]
maxu = -999
maxv = -999
minu = 999
minv = 999
maxrad = -1
#fix unknown flow
greater_u = np.where(u > UNKNOWN_FLOW_THRESH)
greater_v = np.where(v > UNKNOWN_FLOW_THRESH)
u[greater_u] = 0
u[greater_v] = 0
v[greater_u] = 0
v[greater_v] = 0
maxu = max([maxu, np.amax(u)])
minu = min([minu, np.amin(u)])
maxv = max([maxv, np.amax(v)])
minv = min([minv, np.amin(v)])
rad = np.sqrt(np.multiply(u,u)+np.multiply(v,v))
maxrad = max([maxrad, np.amax(rad)])
# print('max flow: %.4f flow range: u = %.3f .. %.3f; v = %.3f .. %.3f\n' % (maxrad, minu, maxu, minv, maxv))
u = u/(maxrad+eps)
v = v/(maxrad+eps)
img = computeColor(u, v)
return img[:,:,[2,1,0]]
for flo in glob.glob(os.path.join('image','flow','*.flo')):
name = flo.split('.')[0]
flow = load_flow(flo)
img = vis_flow(flow)
imageio.imsave(name+'.png', img)