ML之SVM:利用SVM算法(超参数组合进行多线程网格搜索+3fCrVa)对20类新闻文本数据集进行分类预测、评估

输出结

Fitting 3 folds for each of 12 candidates, totalling 36 fits

[CV] svc__C=0.1, svc__gamma=0.01 .....................................

[CV] svc__C=0.1, svc__gamma=0.01 .....................................

[CV] svc__C=0.1, svc__gamma=0.01 .....................................

[CV] svc__C=0.1, svc__gamma=0.1 ......................................

[CV] ............................ svc__C=0.1, svc__gamma=0.01 -  10.2s

[CV] svc__C=0.1, svc__gamma=0.1 ......................................

[CV] ............................ svc__C=0.1, svc__gamma=0.01 -  10.4s

[CV] svc__C=0.1, svc__gamma=0.1 ......................................

[CV] ............................. svc__C=0.1, svc__gamma=0.1 -  10.4s

[CV] ............................ svc__C=0.1, svc__gamma=0.01 -  10.5s

[CV] svc__C=0.1, svc__gamma=1.0 ......................................

[CV] svc__C=0.1, svc__gamma=1.0 ......................................

[CV] ............................. svc__C=0.1, svc__gamma=0.1 -   9.2s

[CV] svc__C=0.1, svc__gamma=1.0 ......................................

[CV] ............................. svc__C=0.1, svc__gamma=0.1 -   9.2s

[CV] svc__C=0.1, svc__gamma=10.0 .....................................

[CV] ............................. svc__C=0.1, svc__gamma=1.0 -   9.2s

[CV] svc__C=0.1, svc__gamma=10.0 .....................................

[CV] ............................. svc__C=0.1, svc__gamma=1.0 -   9.3s

[CV] svc__C=0.1, svc__gamma=10.0 .....................................

[CV] ............................. svc__C=0.1, svc__gamma=1.0 -  11.1s

[CV] svc__C=1.0, svc__gamma=0.01 .....................................

[CV] ............................ svc__C=0.1, svc__gamma=10.0 -  11.1s

[CV] svc__C=1.0, svc__gamma=0.01 .....................................

[CV] ............................ svc__C=0.1, svc__gamma=10.0 -  11.3s

[CV] svc__C=1.0, svc__gamma=0.01 .....................................

[CV] ............................ svc__C=0.1, svc__gamma=10.0 -  11.8s

[CV] svc__C=1.0, svc__gamma=0.1 ......................................

[CV] ............................ svc__C=1.0, svc__gamma=0.01 -  12.3s

[CV] svc__C=1.0, svc__gamma=0.1 ......................................

[CV] ............................ svc__C=1.0, svc__gamma=0.01 -  12.4s

[CV] svc__C=1.0, svc__gamma=0.1 ......................................

[CV] ............................ svc__C=1.0, svc__gamma=0.01 -  12.6s

[CV] svc__C=1.0, svc__gamma=1.0 ......................................

[CV] ............................. svc__C=1.0, svc__gamma=0.1 -  12.0s

[CV] svc__C=1.0, svc__gamma=1.0 ......................................

[CV] ............................. svc__C=1.0, svc__gamma=0.1 -  13.1s

[CV] svc__C=1.0, svc__gamma=1.0 ......................................

[CV] ............................. svc__C=1.0, svc__gamma=0.1 -  13.1s

[CV] svc__C=1.0, svc__gamma=10.0 .....................................

[CV] ............................. svc__C=1.0, svc__gamma=1.0 -  12.9s

[CV] svc__C=1.0, svc__gamma=10.0 .....................................

[CV] ............................. svc__C=1.0, svc__gamma=1.0 -  13.0s

[CV] svc__C=1.0, svc__gamma=10.0 .....................................

[CV] ............................. svc__C=1.0, svc__gamma=1.0 -  11.8s

[CV] svc__C=10.0, svc__gamma=0.01 ....................................

[CV] ............................ svc__C=1.0, svc__gamma=10.0 -  11.6s

[CV] svc__C=10.0, svc__gamma=0.01 ....................................

[CV] ............................ svc__C=1.0, svc__gamma=10.0 -  11.6s

[CV] svc__C=10.0, svc__gamma=0.01 ....................................

[CV] ............................ svc__C=1.0, svc__gamma=10.0 -  11.7s

[CV] svc__C=10.0, svc__gamma=0.1 .....................................

[CV] ........................... svc__C=10.0, svc__gamma=0.01 -  11.4s

[CV] svc__C=10.0, svc__gamma=0.1 .....................................

[CV] ........................... svc__C=10.0, svc__gamma=0.01 -  11.5s

[CV] svc__C=10.0, svc__gamma=0.1 .....................................

[CV] ........................... svc__C=10.0, svc__gamma=0.01 -  11.7s

[CV] ............................ svc__C=10.0, svc__gamma=0.1 -  11.5s

[CV] svc__C=10.0, svc__gamma=1.0 .....................................

[CV] svc__C=10.0, svc__gamma=1.0 .....................................

[CV] ............................ svc__C=10.0, svc__gamma=0.1 -  12.3s

[CV] svc__C=10.0, svc__gamma=1.0 .....................................

[CV] ............................ svc__C=10.0, svc__gamma=0.1 -  12.6s

[CV] svc__C=10.0, svc__gamma=10.0 ....................................

[CV] ............................ svc__C=10.0, svc__gamma=1.0 -  12.6s

[CV] svc__C=10.0, svc__gamma=10.0 ....................................

[CV] ............................ svc__C=10.0, svc__gamma=1.0 -  12.8s

[CV] svc__C=10.0, svc__gamma=10.0 ....................................

[CV] ............................ svc__C=10.0, svc__gamma=1.0 -  13.0s

[CV] ........................... svc__C=10.0, svc__gamma=10.0 -  12.7s

[CV] ........................... svc__C=10.0, svc__gamma=10.0 -  12.7s

[CV] ........................... svc__C=10.0, svc__gamma=10.0 -  12.6s

[Parallel(n_jobs=-1)]: Done  36 out of  36 | elapsed:  1.8min finished

多线程:输出最佳模型在测试集上的准确性: 0.8226666666666667


 

设计思


ML之SVM:利用SVM算法(超参数组合进行多线程网格搜索+3fCrVa)对20类新闻文本数据集进行分类预测、评估

 

核心代

class GridSearchCV(BaseSearchCV):

   """Exhaustive search over specified parameter values for an estimator.

   

   .. deprecated:: 0.18

   This module will be removed in 0.20.

   Use :class:`sklearn.model_selection.GridSearchCV` instead.

   

   Important members are fit, predict.

   

   GridSearchCV implements a "fit" and a "score" method.

   It also implements "predict", "predict_proba", "decision_function",

   "transform" and "inverse_transform" if they are implemented in the

   estimator used.

   

   The parameters of the estimator used to apply these methods are

    optimized

   by cross-validated grid-search over a parameter grid.

   

   Read more in the :ref:`User Guide <grid_search>`.

   

   Parameters

   ----------

   estimator : estimator object.

   A object of that type is instantiated for each grid point.

   This is assumed to implement the scikit-learn estimator interface.

   Either estimator needs to provide a ``score`` function,

   or ``scoring`` must be passed.

   

   param_grid : dict or list of dictionaries

   Dictionary with parameters names (string) as keys and lists of

   parameter settings to try as values, or a list of such

   dictionaries, in which case the grids spanned by each dictionary

   in the list are explored. This enables searching over any sequence

   of parameter settings.

   

   scoring : string, callable or None, default=None

   A string (see model evaluation documentation) or

   a scorer callable object / function with signature

   ``scorer(estimator, X, y)``.

   If ``None``, the ``score`` method of the estimator is used.

   

   fit_params : dict, optional

   Parameters to pass to the fit method.

   

   n_jobs: int, default: 1 :

   The maximum number of estimators fit in parallel.

   

   - If -1 all CPUs are used.

   

   - If 1 is given, no parallel computing code is used at all,

   which is useful for debugging.

   

   - For ``n_jobs`` below -1, ``(n_cpus + n_jobs + 1)`` are used.

   For example, with ``n_jobs = -2`` all CPUs but one are used.

   

   .. versionchanged:: 0.17

   Upgraded to joblib 0.9.3.

   

   pre_dispatch : int, or string, optional

   Controls the number of jobs that get dispatched during parallel

   execution. Reducing this number can be useful to avoid an

   explosion of memory consumption when more jobs get dispatched

   than CPUs can process. This parameter can be:

   

   - None, in which case all the jobs are immediately

   created and spawned. Use this for lightweight and

   fast-running jobs, to avoid delays due to on-demand

   spawning of the jobs

   

   - An int, giving the exact number of total jobs that are

   spawned

   

   - A string, giving an expression as a function of n_jobs,

   as in '2*n_jobs'

   

   iid : boolean, default=True

   If True, the data is assumed to be identically distributed across

   the folds, and the loss minimized is the total loss per sample,

   and not the mean loss across the folds.

   

   cv : int, cross-validation generator or an iterable, optional

   Determines the cross-validation splitting strategy.

   Possible inputs for cv are:

   

   - None, to use the default 3-fold cross-validation,

   - integer, to specify the number of folds.

   - An object to be used as a cross-validation generator.

   - An iterable yielding train/test splits.

   

   For integer/None inputs, if the estimator is a classifier and ``y`` is

   either binary or multiclass,

   :class:`sklearn.model_selection.StratifiedKFold` is used. In all

   other cases, :class:`sklearn.model_selection.KFold` is used.

   

   Refer :ref:`User Guide <cross_validation>` for the various

   cross-validation strategies that can be used here.

   

   refit : boolean, default=True

   Refit the best estimator with the entire dataset.

   If "False", it is impossible to make predictions using

   this GridSearchCV instance after fitting.

   

   verbose : integer

   Controls the verbosity: the higher, the more messages.

   

   error_score : 'raise' (default) or numeric

   Value to assign to the score if an error occurs in estimator fitting.

   If set to 'raise', the error is raised. If a numeric value is given,

   FitFailedWarning is raised. This parameter does not affect the refit

   step, which will always raise the error.

   

   

   Examples

   --------

   >>> from sklearn import svm, grid_search, datasets

   >>> iris = datasets.load_iris()

   >>> parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]}

   >>> svr = svm.SVC()

   >>> clf = grid_search.GridSearchCV(svr, parameters)

   >>> clf.fit(iris.data, iris.target)

   ...                             # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS

   GridSearchCV(cv=None, error_score=...,

   estimator=SVC(C=1.0, cache_size=..., class_weight=..., coef0=...,

   decision_function_shape='ovr', degree=..., gamma=...,

   kernel='rbf', max_iter=-1, probability=False,

   random_state=None, shrinking=True, tol=...,

   verbose=False),

   fit_params={}, iid=..., n_jobs=1,

   param_grid=..., pre_dispatch=..., refit=...,

   scoring=..., verbose=...)

   

   

   Attributes

   ----------

   grid_scores_ : list of named tuples

   Contains scores for all parameter combinations in param_grid.

   Each entry corresponds to one parameter setting.

   Each named tuple has the attributes:

   

   * ``parameters``, a dict of parameter settings

   * ``mean_validation_score``, the mean score over the

   cross-validation folds

   * ``cv_validation_scores``, the list of scores for each fold

   

   best_estimator_ : estimator

   Estimator that was chosen by the search, i.e. estimator

   which gave highest score (or smallest loss if specified)

   on the left out data. Not available if refit=False.

   

   best_score_ : float

   Score of best_estimator on the left out data.

   

   best_params_ : dict

   Parameter setting that gave the best results on the hold out data.

   

   scorer_ : function

   Scorer function used on the held out data to choose the best

   parameters for the model.

   

   Notes

   ------

   The parameters selected are those that maximize the score of the left

    out

   data, unless an explicit score is passed in which case it is used instead.

   

   If `n_jobs` was set to a value higher than one, the data is copied for

    each

   point in the grid (and not `n_jobs` times). This is done for efficiency

   reasons if individual jobs take very little time, but may raise errors if

   the dataset is large and not enough memory is available.  A

    workaround in

   this case is to set `pre_dispatch`. Then, the memory is copied only

   `pre_dispatch` many times. A reasonable value for `pre_dispatch` is `2 *

   n_jobs`.

   

   See Also

   ---------

   :class:`ParameterGrid`:

   generates all the combinations of a hyperparameter grid.

   

   :func:`sklearn.cross_validation.train_test_split`:

   utility function to split the data into a development set usable

   for fitting a GridSearchCV instance and an evaluation set for

   its final evaluation.

   

   :func:`sklearn.metrics.make_scorer`:

   Make a scorer from a performance metric or loss function.

   

   """

   def __init__(self, estimator, param_grid, scoring=None,

    fit_params=None,

       n_jobs=1, iid=True, refit=True, cv=None, verbose=0,

       pre_dispatch='2*n_jobs', error_score='raise'):

       super(GridSearchCV, self).__init__(estimator, scoring, fit_params,

        n_jobs, iid, refit, cv, verbose, pre_dispatch, error_score)

       self.param_grid = param_grid

       _check_param_grid(param_grid)

   

   def fit(self, X, y=None):

       """Run fit with all sets of parameters.

       Parameters

       ----------

       X : array-like, shape = [n_samples, n_features]

           Training vector, where n_samples is the number of samples and

           n_features is the number of features.

       y : array-like, shape = [n_samples] or [n_samples, n_output],

        optional

           Target relative to X for classification or regression;

           None for unsupervised learning.

       """

       return self._fit(X, y, ParameterGrid(self.param_grid))


上一篇:C# 视频监控系列(11):H264播放器——封装API[HikPlayM4.dll](4)


下一篇:ECS使用有感