一、概要描述
在上篇博文描述了TaskTracker启动一个独立的java进程来执行Map任务。接上上篇文章,TaskRunner线程执行中,会构造一个java –D** Child address port tasked这样第一个java命令,单独启动一个java进程。在Child的main函数中通过TaskUmbilicalProtocol协议,从TaskTracker获得需要执行的Task,并调用Task的run方法来执行。在ReduceTask而Task的run方法会通过java反射机制构造Reducer,Reducer.Context,然后调用构造的Reducer的run方法执行reduce操作。不同于map任务,在执行reduce任务前,需要把map的输出从map运行的tasktracker上拷贝到reducer运行的tasktracker上。
Reduce需要集群上若干个map任务的输出作为其特殊的分区文件。每个map任务完成的时间可能不同,因此只要有一个任务完成,reduce任务就开始复制其输出。这就是reduce任务的复制阶段。其实是启动若干个MapOutputCopier线程来复制完所有map输出。在复制完成后reduce任务进入排序阶段。这个阶段将由LocalFSMerger或InMemFSMergeThread合并map输出,维持其顺序排序。【即对有序的几个文件进行归并,采用归并排序】在reduce阶段,对已排序输出的每个键都要调用reduce函数,此阶段的输出直接写到文件系统,一般为HDFS上。(如果采用HDFS,由于tasktracker节点也是DataNoe,所以第一个块副本将被写到本地磁盘。 即数据本地化)
Map 任务完成后,会通知其父tasktracker状态更新,然后tasktracker通知jobtracker。通过心跳机制来完成。因此jobtracker知道map输出和tasktracker之间的映射关系。Reducer的一个getMapCompletionEvents线程定期询问jobtracker以便获取map输出位置。
二、 流程描述
1.在ReduceTak中 构建ReduceCopier对象,调用其fetchOutputs方法。
2. 在ReduceCopier的fetchOutputs方法中分别构造几个独立的线程。相互配合,并分别独立的完成任务。
2.1 GetMapEventsThread线程通过RPC询问TaskTracker,对每个完成的Event,获取maptask所在的服务器地址,即MapTask输出的地址,构造URL,加入到mapLocations,供copier线程获取。
2.2构造并启动若干个MapOutputCopier线程,通过http协议,把map的输出从远端服务器拷贝的本地,如果可以放在内存中,则存储在内存中调用,否则保存在本地文件。
2.3LocalFSMerger对磁盘上的map 输出进行归并。
2.4nMemFSMergeThread对内存中的map输出进行归并。
3.根据拷贝到的map输出构造一个raw keyvalue的迭代器,作为reduce的输入。
4. 调用runNewReducer方法中根据配置的Reducer类构造一个Reducer实例和运行的上下文。并调用reducer的run方法来执行到用户定义的reduce操作。。
5.在Reducer的run方法中从上下文中取出一个key和该key对应的Value集合(Iterable<VALUEIN>类型),调用reducer的reduce方法进行处理。
6. Recuer的reduce方法是用户定义的处理数据的方法,也是用户唯一需要定义的方法。
三、代码详细
1. Child的main方法每个task进程都会被在单独的进程中执行,这个方法就是这些进程的入口方法。Reduce和map一样都是由该main函数调用。所以此处不做描述,详细见上节Child启动map任务。
2. ReduceTask的run方法。在Child子进程中被调用,执行用户定义的Reduce操作。前面代码逻辑和MapTask类似。通过TaskUmbilicalProtocol向tasktracker上报执行进度。开启线程向TaskTracker上报进度,根据task的不同动作要求执行不同的方法,如jobClean,jobsetup,taskCleanup。对于部分的了解可以产看taskTracker获取Task文章中的 JobTracker的 heartbeat方法处的详细解释。不同于map任务,在执行reduce任务前,需要把map的输出从map运行的tasktracker上拷贝到reducer运行的tasktracker上。
@SuppressWarnings("unchecked") public void run(JobConf job, final TaskUmbilicalProtocol umbilical) throws IOException, InterruptedException, ClassNotFoundException { job.setBoolean("mapred.skip.on", isSkipping()); if (isMapOrReduce()) { copyPhase = getProgress().addPhase("copy"); sortPhase = getProgress().addPhase("sort"); reducePhase = getProgress().addPhase("reduce"); } // start thread that will handle communication with parent TaskReporter reporter = new TaskReporter(getProgress(), umbilical); reporter.startCommunicationThread(); boolean useNewApi = job.getUseNewReducer(); initialize(job, getJobID(), reporter, useNewApi); // check if it is a cleanupJobTask if (jobCleanup) { runJobCleanupTask(umbilical, reporter); return; } if (jobSetup) { runJobSetupTask(umbilical, reporter); return; } if (taskCleanup) { runTaskCleanupTask(umbilical, reporter); return; } // Initialize the codec codec = initCodec(); boolean isLocal = "local".equals(job.get("mapred.job.tracker", "local")); //如果不是一个本地执行额模式(就是配置中不是分布式的),则要启动一个ReduceCopier来拷贝Map的输出,即Reduce的输入。 if (!isLocal) { reduceCopier = new ReduceCopier(umbilical, job, reporter); if (!reduceCopier.fetchOutputs()) { if(reduceCopier.mergeThrowable instanceof FSError) { LOG.error("Task: " + getTaskID() + " - FSError: " + StringUtils.stringifyException(reduceCopier.mergeThrowable)); umbilical.fsError(getTaskID(), reduceCopier.mergeThrowable.getMessage()); } throw new IOException("Task: " + getTaskID() + " - The reduce copier failed", reduceCopier.mergeThrowable); } } copyPhase.complete(); //拷贝完成后,进入sort阶段。 setPhase(TaskStatus.Phase.SORT); statusUpdate(umbilical); final FileSystem rfs = FileSystem.getLocal(job).getRaw(); RawKeyValueIterator rIter = isLocal ? Merger.merge(job, rfs, job.getMapOutputKeyClass(), job.getMapOutputValueClass(), codec, getMapFiles(rfs, true), !conf.getKeepFailedTaskFiles(), job.getInt("io.sort.factor", 100), new Path(getTaskID().toString()), job.getOutputKeyComparator(), reporter, spilledRecordsCounter, null) : reduceCopier.createKVIterator(job, rfs, reporter); // free up the data structures mapOutputFilesOnDisk.clear(); sortPhase.complete(); // sort is complete setPhase(TaskStatus.Phase.REDUCE); statusUpdate(umbilical); Class keyClass = job.getMapOutputKeyClass(); Class valueClass = job.getMapOutputValueClass(); RawComparator comparator = job.getOutputValueGroupingComparator(); if (useNewApi) { runNewReducer(job, umbilical, reporter, rIter, comparator, keyClass, valueClass); } else { runOldReducer(job, umbilical, reporter, rIter, comparator, keyClass, valueClass); } done(umbilical, reporter); }
3. ReduceCopier类的fetchOutputs方法。该方法负责将map的输出拷贝的reduce端进程处理。从代码上看,启动了一个LocalFSMerger、InMemFSMergeThread、 GetMapEventsThread 和若干个MapOutputCopier线程。几个独立的线程。相互配合,并分别独立的完成任务。
public boolean fetchOutputs() throws IOException { int totalFailures = 0; int numInFlight = 0, numCopied = 0; DecimalFormat mbpsFormat = new DecimalFormat("0.00"); final Progress copyPhase = reduceTask.getProgress().phase(); LocalFSMerger localFSMergerThread = null; InMemFSMergeThread inMemFSMergeThread = null; GetMapEventsThread getMapEventsThread = null; for (int i = 0; i < numMaps; i++) { copyPhase.addPhase(); // add sub-phase per file } //1)根据配置的numCopiers数量构造若干个MapOutputCopier拷贝线程,默认是5个,正是这些MapOutputCopier来实施的拷贝任务。 copiers = new ArrayList<MapOutputCopier>(numCopiers); // start all the copying threads for (int i=0; i < numCopiers; i++) { MapOutputCopier copier = new MapOutputCopier(conf, reporter); copiers.add(copier); copier.start(); } //start the on-disk-merge thread 2)启动磁盘merge线程(参照后面方法) localFSMergerThread = new LocalFSMerger((LocalFileSystem)localFileSys); //start the in memory merger thread 3)启动内存merge线程(参照后面方法) inMemFSMergeThread = new InMemFSMergeThread(); localFSMergerThread.start(); inMemFSMergeThread.start(); // start the map events thread 4)启动merge事件获取线程 getMapEventsThread = new GetMapEventsThread(); getMapEventsThread.start(); // start the clock for bandwidth measurement long startTime = System.currentTimeMillis(); long currentTime = startTime; long lastProgressTime = startTime; long lastOutputTime = 0; // loop until we get all required outputs //5)当获取到的copiedMapOutputs数量小于map数时,说明还没有拷贝完成,则一直执行。在执行中会根据时间进度一直打印输出,表示已经拷贝了多少个map的输出,还有多万未完成。 while (copiedMapOutputs.size() < numMaps && mergeThrowable == null) { currentTime = System.currentTimeMillis(); boolean logNow = false; if (currentTime - lastOutputTime > MIN_LOG_TIME) { lastOutputTime = currentTime; logNow = true; } if (logNow) { LOG.info(reduceTask.getTaskID() + " Need another " + (numMaps - copiedMapOutputs.size()) + " map output(s) " + "where " + numInFlight + " is already in progress"); } // Put the hash entries for the failed fetches. Iterator<MapOutputLocation> locItr = retryFetches.iterator(); while (locItr.hasNext()) { MapOutputLocation loc = locItr.next(); List<MapOutputLocation> locList = mapLocations.get(loc.getHost()); // Check if the list exists. Map output location mapping is cleared // once the jobtracker restarts and is rebuilt from scratch. // Note that map-output-location mapping will be recreated and hence // we continue with the hope that we might find some locations // from the rebuild map. if (locList != null) { // Add to the beginning of the list so that this map is //tried again before the others and we can hasten the //re-execution of this map should there be a problem locList.add(0, loc); } } if (retryFetches.size() > 0) { LOG.info(reduceTask.getTaskID() + ": " + "Got " + retryFetches.size() + " map-outputs from previous failures"); } // clear the "failed" fetches hashmap retryFetches.clear(); // now walk through the cache and schedule what we can int numScheduled = 0; int numDups = 0; synchronized (scheduledCopies) { // Randomize the map output locations to prevent // all reduce-tasks swamping the same tasktracker List<String> hostList = new ArrayList<String>(); hostList.addAll(mapLocations.keySet()); Collections.shuffle(hostList, this.random); Iterator<String> hostsItr = hostList.iterator(); while (hostsItr.hasNext()) { String host = hostsItr.next(); List<MapOutputLocation> knownOutputsByLoc = mapLocations.get(host); // Check if the list exists. Map output location mapping is // cleared once the jobtracker restarts and is rebuilt from // scratch. // Note that map-output-location mapping will be recreated and // hence we continue with the hope that we might find some // locations from the rebuild map and add then for fetching. if (knownOutputsByLoc == null || knownOutputsByLoc.size() == 0) { continue; } //Identify duplicate hosts here if (uniqueHosts.contains(host)) { numDups += knownOutputsByLoc.size(); continue; } Long penaltyEnd = penaltyBox.get(host); boolean penalized = false; if (penaltyEnd != null) { if (currentTime < penaltyEnd.longValue()) { penalized = true; } else { penaltyBox.remove(host); } } if (penalized) continue; synchronized (knownOutputsByLoc) { locItr = knownOutputsByLoc.iterator(); while (locItr.hasNext()) { MapOutputLocation loc = locItr.next(); // Do not schedule fetches from OBSOLETE maps if (obsoleteMapIds.contains(loc.getTaskAttemptId())) { locItr.remove(); continue; } uniqueHosts.add(host); scheduledCopies.add(loc); locItr.remove(); // remove from knownOutputs numInFlight++; numScheduled++; break; //we have a map from this host } } } scheduledCopies.notifyAll(); } if (numScheduled > 0 || logNow) { LOG.info(reduceTask.getTaskID() + " Scheduled " + numScheduled + " outputs (" + penaltyBox.size() + " slow hosts and" + numDups + " dup hosts)"); } if (penaltyBox.size() > 0 && logNow) { LOG.info("Penalized(slow) Hosts: "); for (String host : penaltyBox.keySet()) { LOG.info(host + " Will be considered after: " + ((penaltyBox.get(host) - currentTime)/1000) + " seconds."); } } // if we have no copies in flight and we can‘t schedule anything // new, just wait for a bit try { if (numInFlight == 0 && numScheduled == 0) { // we should indicate progress as we don‘t want TT to think // we‘re stuck and kill us reporter.progress(); Thread.sleep(5000); } } catch (InterruptedException e) { } // IGNORE while (numInFlight > 0 && mergeThrowable == null) { LOG.debug(reduceTask.getTaskID() + " numInFlight = " + numInFlight); //the call to getCopyResult will either //1) return immediately with a null or a valid CopyResult object, // or //2) if the numInFlight is above maxInFlight, return with a // CopyResult object after getting a notification from a // fetcher thread, //So, when getCopyResult returns null, we can be sure that //we aren‘t busy enough and we should go and get more mapcompletion //events from the tasktracker CopyResult cr = getCopyResult(numInFlight); if (cr == null) { break; } if (cr.getSuccess()) { // a successful copy numCopied++; lastProgressTime = System.currentTimeMillis(); reduceShuffleBytes.increment(cr.getSize()); long secsSinceStart = (System.currentTimeMillis()-startTime)/1000+1; float mbs = ((float)reduceShuffleBytes.getCounter())/(1024*1024); float transferRate = mbs/secsSinceStart; copyPhase.startNextPhase(); copyPhase.setStatus("copy (" + numCopied + " of " + numMaps + " at " + mbpsFormat.format(transferRate) + " MB/s)"); // Note successful fetch for this mapId to invalidate // (possibly) old fetch-failures fetchFailedMaps.remove(cr.getLocation().getTaskId()); } else if (cr.isObsolete()) { //ignore LOG.info(reduceTask.getTaskID() + " Ignoring obsolete copy result for Map Task: " + cr.getLocation().getTaskAttemptId() + " from host: " + cr.getHost()); } else { retryFetches.add(cr.getLocation()); // note the failed-fetch TaskAttemptID mapTaskId = cr.getLocation().getTaskAttemptId(); TaskID mapId = cr.getLocation().getTaskId(); totalFailures++; Integer noFailedFetches = mapTaskToFailedFetchesMap.get(mapTaskId); noFailedFetches = (noFailedFetches == null) ? 1 : (noFailedFetches + 1); mapTaskToFailedFetchesMap.put(mapTaskId, noFailedFetches); LOG.info("Task " + getTaskID() + ": Failed fetch #" + noFailedFetches + " from " + mapTaskId); // did the fetch fail too many times? // using a hybrid technique for notifying the jobtracker. // a. the first notification is sent after max-retries // b. subsequent notifications are sent after 2 retries. if ((noFailedFetches >= maxFetchRetriesPerMap) && ((noFailedFetches - maxFetchRetriesPerMap) % 2) == 0) { synchronized (ReduceTask.this) { taskStatus.addFetchFailedMap(mapTaskId); LOG.info("Failed to fetch map-output from " + mapTaskId + " even after MAX_FETCH_RETRIES_PER_MAP retries... " + " reporting to the JobTracker"); } } // note unique failed-fetch maps if (noFailedFetches == maxFetchRetriesPerMap) { fetchFailedMaps.add(mapId); // did we have too many unique failed-fetch maps? // and did we fail on too many fetch attempts? // and did we progress enough // or did we wait for too long without any progress? // check if the reducer is healthy boolean reducerHealthy = (((float)totalFailures / (totalFailures + numCopied)) < MAX_ALLOWED_FAILED_FETCH_ATTEMPT_PERCENT); // check if the reducer has progressed enough boolean reducerProgressedEnough = (((float)numCopied / numMaps) >= MIN_REQUIRED_PROGRESS_PERCENT); // check if the reducer is stalled for a long time // duration for which the reducer is stalled int stallDuration = (int)(System.currentTimeMillis() - lastProgressTime); // duration for which the reducer ran with progress int shuffleProgressDuration = (int)(lastProgressTime - startTime); // min time the reducer should run without getting killed int minShuffleRunDuration = (shuffleProgressDuration > maxMapRuntime) ? shuffleProgressDuration : maxMapRuntime; boolean reducerStalled = (((float)stallDuration / minShuffleRunDuration) >= MAX_ALLOWED_STALL_TIME_PERCENT); // kill if not healthy and has insufficient progress if ((fetchFailedMaps.size() >= maxFailedUniqueFetches || fetchFailedMaps.size() == (numMaps - copiedMapOutputs.size())) && !reducerHealthy && (!reducerProgressedEnough || reducerStalled)) { LOG.fatal("Shuffle failed with too many fetch failures " + "and insufficient progress!" + "Killing task " + getTaskID() + "."); umbilical.shuffleError(getTaskID(), "Exceeded MAX_FAILED_UNIQUE_FETCHES;" + " bailing-out."); } } // back off exponentially until num_retries <= max_retries // back off by max_backoff/2 on subsequent failed attempts currentTime = System.currentTimeMillis(); int currentBackOff = noFailedFetches <= maxFetchRetriesPerMap ? BACKOFF_INIT * (1 << (noFailedFetches - 1)) : (this.maxBackoff * 1000 / 2); penaltyBox.put(cr.getHost(), currentTime + currentBackOff); LOG.warn(reduceTask.getTaskID() + " adding host " + cr.getHost() + " to penalty box, next contact in " + (currentBackOff/1000) + " seconds"); } uniqueHosts.remove(cr.getHost()); numInFlight--; } } // all done, inform the copiers to exit exitGetMapEvents= true; try { getMapEventsThread.join(); LOG.info("getMapsEventsThread joined."); } catch (Throwable t) { LOG.info("getMapsEventsThread threw an exception: " + StringUtils.stringifyException(t)); } synchronized (copiers) { synchronized (scheduledCopies) { for (MapOutputCopier copier : copiers) { copier.interrupt(); } copiers.clear(); } } // copiers are done, exit and notify the waiting merge threads synchronized (mapOutputFilesOnDisk) { exitLocalFSMerge = true; mapOutputFilesOnDisk.notify(); } ramManager.close(); //Do a merge of in-memory files (if there are any) if (mergeThrowable == null) { try { // Wait for the on-disk merge to complete localFSMergerThread.join(); LOG.info("Interleaved on-disk merge complete: " + mapOutputFilesOnDisk.size() + " files left."); //wait for an ongoing merge (if it is in flight) to complete inMemFSMergeThread.join(); LOG.info("In-memory merge complete: " + mapOutputsFilesInMemory.size() + " files left."); } catch (Throwable t) { LOG.warn(reduceTask.getTaskID() + " Final merge of the inmemory files threw an exception: " + StringUtils.stringifyException(t)); // check if the last merge generated an error if (mergeThrowable != null) { mergeThrowable = t; } return false; } } return mergeThrowable == null && copiedMapOutputs.size() == numMaps; }
4. MapOutputCopier线程的run方法。从scheduledCopies(List<MapOutputLocation>)中取出对象来调用copyOutput方法执行拷贝。通过http协议,把map的输出从远端服务器拷贝的本地,如果可以放在内存中,则存储在内存中调用,否则保存在本地文件。
public void run() { while (true) { MapOutputLocation loc = null; long size = -1; synchronized (scheduledCopies) { while (scheduledCopies.isEmpty()) { scheduledCopies.wait(); } loc = scheduledCopies.remove(0); } start(loc); size = copyOutput(loc); if (decompressor != null) { CodecPool.returnDecompressor(decompressor); } }
5.MapOutputCopier线程的copyOutput方法。map的输出从远端map所在的tasktracker拷贝到reducer任务所在的tasktracker。
private long copyOutput(MapOutputLocation loc ) throws IOException, InterruptedException { // 从拷贝的记录中检查是否已经拷贝完成。 if (copiedMapOutputs.contains(loc.getTaskId()) || obsoleteMapIds.contains(loc.getTaskAttemptId())) { return CopyResult.OBSOLETE; } TaskAttemptID reduceId = reduceTask.getTaskID(); Path filename = new Path("/" + TaskTracker.getIntermediateOutputDir( reduceId.getJobID().toString(), reduceId.toString()) + "/map_" + loc.getTaskId().getId() + ".out"); //一个拷贝map输出的临时文件。 Path tmpMapOutput = new Path(filename+"-"+id); //拷贝map输出。 MapOutput mapOutput = getMapOutput(loc, tmpMapOutput); if (mapOutput == null) { throw new IOException("Failed to fetch map-output for " + loc.getTaskAttemptId() + " from " + loc.getHost()); } // The size of the map-output long bytes = mapOutput.compressedSize; synchronized (ReduceTask.this) { if (copiedMapOutputs.contains(loc.getTaskId())) { mapOutput.discard(); return CopyResult.OBSOLETE; } // Note that we successfully copied the map-output noteCopiedMapOutput(loc.getTaskId()); return bytes; } // 处理map的输出,如果是存储在内存中则添加到(Collections.synchronizedList(new LinkedList<MapOutput>)类型的结合mapOutputsFilesInMemory中,否则如果存储在临时文件中,则冲明明临时文件为正式的输出文件。 if (mapOutput.inMemory) { // Save it in the synchronized list of map-outputs mapOutputsFilesInMemory.add(mapOutput); } else { tmpMapOutput = mapOutput.file; filename = new Path(tmpMapOutput.getParent(), filename.getName()); if (!localFileSys.rename(tmpMapOutput, filename)) { localFileSys.delete(tmpMapOutput, true); bytes = -1; throw new IOException("Failed to rename map output " + tmpMapOutput + " to " + filename); } synchronized (mapOutputFilesOnDisk) { addToMapOutputFilesOnDisk(localFileSys.getFileStatus(filename)); } } // Note that we successfully copied the map-output noteCopiedMapOutput(loc.getTaskId()); } return bytes; }
5.ReduceCopier.MapOutputCopier的getMapOutput方法,真正执行拷贝动作的方法,通过http把远端服务器上map的输出拷贝到本地。
private MapOutput getMapOutput(MapOutputLocation mapOutputLoc, Path filename, int reduce) throws IOException, InterruptedException { // 根据远端服务器地址构建连接。 URLConnection connection = mapOutputLoc.getOutputLocation().openConnection(); InputStream input = getInputStream(connection, STALLED_COPY_TIMEOUT, DEFAULT_READ_TIMEOUT); // 从输出的http header中得到mapid TaskAttemptID mapId = null; mapId = TaskAttemptID.forName(connection.getHeaderField(FROM_MAP_TASK)); TaskAttemptID expectedMapId = mapOutputLoc.getTaskAttemptId(); if (!mapId.equals(expectedMapId)) { LOG.warn("data from wrong map:" + mapId + " arrived to reduce task " + reduce + ", where as expected map output should be from " + expectedMapId); return null; } long decompressedLength = Long.parseLong(connection.getHeaderField(RAW_MAP_OUTPUT_LENGTH)); long compressedLength = Long.parseLong(connection.getHeaderField(MAP_OUTPUT_LENGTH)); if (compressedLength < 0 || decompressedLength < 0) { LOG.warn(getName() + " invalid lengths in map output header: id: " + mapId + " compressed len: " + compressedLength + ", decompressed len: " + decompressedLength); return null; } int forReduce = (int)Integer.parseInt(connection.getHeaderField(FOR_REDUCE_TASK)); if (forReduce != reduce) { LOG.warn("data for the wrong reduce: " + forReduce + " with compressed len: " + compressedLength + ", decompressed len: " + decompressedLength + " arrived to reduce task " + reduce); return null; } LOG.info("header: " + mapId + ", compressed len: " + compressedLength + ", decompressed len: " + decompressedLength); // 检查map的输出大小是否能在memory里存储下,已决定是在内存中shuffle还是在磁盘上shuffle。并决定最终生成的MapOutput对象调用不同的构造函数,其inMemory属性页不同。 boolean shuffleInMemory = ramManager.canFitInMemory(decompressedLength); // Shuffle MapOutput mapOutput = null; if (shuffleInMemory) { LOG.info("Shuffling " + decompressedLength + " bytes (" + compressedLength + " raw bytes) " + "into RAM from " + mapOutputLoc.getTaskAttemptId()); mapOutput = shuffleInMemory(mapOutputLoc, connection, input, (int)decompressedLength, (int)compressedLength); } else { LOG.info("Shuffling " + decompressedLength + " bytes (" + compressedLength + " raw bytes) " + "into Local-FS from " + mapOutputLoc.getTaskAttemptId()); mapOutput = shuffleToDisk(mapOutputLoc, input, filename, compressedLength); } return mapOutput; }
6.ReduceTask.ReduceCopier.MapOutputCopier的shuffleInMemory方法。根据上一方法当map的输出可以在内存中存储时会调用该方法。
private MapOutput shuffleInMemory(MapOutputLocation mapOutputLoc, URLConnection connection, InputStream input, int mapOutputLength, int compressedLength) throws IOException, InterruptedException { //checksum 输入流,读Mpareduce中间文件IFile. IFileInputStream checksumIn = new IFileInputStream(input,compressedLength); input = checksumIn; // 如果加密,则根据codec来构建一个解密的输入流。 if (codec != null) { decompressor.reset(); input = codec.createInputStream(input, decompressor); } //把map的输出拷贝到内存的buffer中。 byte[] shuffleData = new byte[mapOutputLength]; MapOutput mapOutput = new MapOutput(mapOutputLoc.getTaskId(), mapOutputLoc.getTaskAttemptId(), shuffleData, compressedLength); int bytesRead = 0; try { int n = input.read(shuffleData, 0, shuffleData.length); while (n > 0) { bytesRead += n; shuffleClientMetrics.inputBytes(n); // indicate we‘re making progress reporter.progress(); n = input.read(shuffleData, bytesRead, (shuffleData.length-bytesRead)); } LOG.info("Read " + bytesRead + " bytes from map-output for " + mapOutputLoc.getTaskAttemptId()); input.close(); } catch (IOException ioe) { LOG.info("Failed to shuffle from " + mapOutputLoc.getTaskAttemptId(), ioe); // Inform the ram-manager ramManager.closeInMemoryFile(mapOutputLength); ramManager.unreserve(mapOutputLength); // Discard the map-output try { mapOutput.discard(); } catch (IOException ignored) { LOG.info("Failed to discard map-output from " + mapOutputLoc.getTaskAttemptId(), ignored); } mapOutput = null; // Close the streams IOUtils.cleanup(LOG, input); // Re-throw throw ioe; } // Close the in-memory file ramManager.closeInMemoryFile(mapOutputLength); // Sanity check if (bytesRead != mapOutputLength) { // Inform the ram-manager ramManager.unreserve(mapOutputLength); // Discard the map-output try { mapOutput.discard(); } catch (IOException ignored) { // IGNORED because we are cleaning up LOG.info("Failed to discard map-output from " + mapOutputLoc.getTaskAttemptId(), ignored); } mapOutput = null; throw new IOException("Incomplete map output received for " + mapOutputLoc.getTaskAttemptId() + " from " + mapOutputLoc.getOutputLocation() + " (" + bytesRead + " instead of " + mapOutputLength + ")" ); } // TODO: Remove this after a ‘fix‘ for HADOOP-3647 if (mapOutputLength > 0) { DataInputBuffer dib = new DataInputBuffer(); dib.reset(shuffleData, 0, shuffleData.length); LOG.info("Rec #1 from " + mapOutputLoc.getTaskAttemptId() + " -> (" + WritableUtils.readVInt(dib) + ", " + WritableUtils.readVInt(dib) + ") from " + mapOutputLoc.getHost()); } return mapOutput; }
7.ReduceTask.ReduceCopier.MapOutputCopier的shuffleToDisk 方法把map输出拷贝到本地磁盘。当map的输出不能再内存中存储时,调用该方法。
private MapOutput shuffleToDisk(MapOutputLocation mapOutputLoc, InputStream input, Path filename, long mapOutputLength) throws IOException { // Find out a suitable location for the output on local-filesystem Path localFilename = lDirAlloc.getLocalPathForWrite(filename.toUri().getPath(), mapOutputLength, conf); MapOutput mapOutput = new MapOutput(mapOutputLoc.getTaskId(), mapOutputLoc.getTaskAttemptId(), conf, localFileSys.makeQualified(localFilename), mapOutputLength); // Copy data to local-disk OutputStream output = null; long bytesRead = 0; try { output = rfs.create(localFilename); byte[] buf = new byte[64 * 1024]; int n = input.read(buf, 0, buf.length); while (n > 0) { bytesRead += n; shuffleClientMetrics.inputBytes(n); output.write(buf, 0, n); // indicate we‘re making progress reporter.progress(); n = input.read(buf, 0, buf.length); } LOG.info("Read " + bytesRead + " bytes from map-output for " + mapOutputLoc.getTaskAttemptId()); output.close(); input.close(); } catch (IOException ioe) { LOG.info("Failed to shuffle from " + mapOutputLoc.getTaskAttemptId(), ioe); // Discard the map-output try { mapOutput.discard(); } catch (IOException ignored) { LOG.info("Failed to discard map-output from " + mapOutputLoc.getTaskAttemptId(), ignored); } mapOutput = null; // Close the streams IOUtils.cleanup(LOG, input, output); // Re-throw throw ioe; } // Sanity check if (bytesRead != mapOutputLength) { try { mapOutput.discard(); } catch (Exception ioe) { // IGNORED because we are cleaning up LOG.info("Failed to discard map-output from " + mapOutputLoc.getTaskAttemptId(), ioe); } catch (Throwable t) { String msg = getTaskID() + " : Failed in shuffle to disk :" + StringUtils.stringifyException(t); reportFatalError(getTaskID(), t, msg); } mapOutput = null; throw new IOException("Incomplete map output received for " + mapOutputLoc.getTaskAttemptId() + " from " + mapOutputLoc.getOutputLocation() + " (" + bytesRead + " instead of " + mapOutputLength + ")" ); } return mapOutput; }
8.LocalFSMerger线程的run方法。Merge map输出的本地拷贝。
public void run() { try { LOG.info(reduceTask.getTaskID() + " Thread started: " + getName()); while(!exitLocalFSMerge){ // TreeSet<FileStatus>(mapOutputFileComparator)中存储了mapout的本地文件集合。 synchronized (mapOutputFilesOnDisk) { List<Path> mapFiles = new ArrayList<Path>(); long approxOutputSize = 0; int bytesPerSum = reduceTask.getConf().getInt("io.bytes.per.checksum", 512); LOG.info(reduceTask.getTaskID() + "We have " + mapOutputFilesOnDisk.size() + " map outputs on disk. " + "Triggering merge of " + ioSortFactor + " files"); // 1. Prepare the list of files to be merged. This list is prepared // using a list of map output files on disk. Currently we merge // io.sort.factor files into 1. //1. io.sort.factor构造List<Path> mapFiles,准备合并。 synchronized (mapOutputFilesOnDisk) { for (int i = 0; i < ioSortFactor; ++i) { FileStatus filestatus = mapOutputFilesOnDisk.first(); mapOutputFilesOnDisk.remove(filestatus); mapFiles.add(filestatus.getPath()); approxOutputSize += filestatus.getLen(); } } // add the checksum length approxOutputSize += ChecksumFileSystem .getChecksumLength(approxOutputSize, bytesPerSum); // 2. 对list中的文件进行合并。 Path outputPath = lDirAlloc.getLocalPathForWrite(mapFiles.get(0).toString(), approxOutputSize, conf) .suffix(".merged"); Writer writer = new Writer(conf,rfs, outputPath, conf.getMapOutputKeyClass(), conf.getMapOutputValueClass(), codec, null); RawKeyValueIterator iter = null; Path tmpDir = new Path(reduceTask.getTaskID().toString()); try { iter = Merger.merge(conf, rfs, conf.getMapOutputKeyClass(), conf.getMapOutputValueClass(), codec, mapFiles.toArray(new Path[mapFiles.size()]), true, ioSortFactor, tmpDir, conf.getOutputKeyComparator(), reporter, spilledRecordsCounter, null); Merger.writeFile(iter, writer, reporter, conf); writer.close(); } catch (Exception e) { localFileSys.delete(outputPath, true); throw new IOException (StringUtils.stringifyException(e)); } synchronized (mapOutputFilesOnDisk) { addToMapOutputFilesOnDisk(localFileSys.getFileStatus(outputPath)); } LOG.info(reduceTask.getTaskID() + " Finished merging " + mapFiles.size() + " map output files on disk of total-size " + approxOutputSize + "." + " Local output file is " + outputPath + " of size " + localFileSys.getFileStatus(outputPath).getLen()); } } catch (Throwable t) { LOG.warn(reduceTask.getTaskID() + " Merging of the local FS files threw an exception: " + StringUtils.stringifyException(t)); if (mergeThrowable == null) { mergeThrowable = t; } } } }
9.InMemFSMergeThread线程的run方法。
public void run() { LOG.info(reduceTask.getTaskID() + " Thread started: " + getName()); try { boolean exit = false; do { exit = ramManager.waitForDataToMerge(); if (!exit) { doInMemMerge(); } } while (!exit); } catch (Throwable t) { LOG.warn(reduceTask.getTaskID() + " Merge of the inmemory files threw an exception: " + StringUtils.stringifyException(t)); ReduceCopier.this.mergeThrowable = t; } }
10. InMemFSMergeThread线程的doInMemMerge方法,
private void doInMemMerge() throws IOException{ if (mapOutputsFilesInMemory.size() == 0) { return; } TaskID mapId = mapOutputsFilesInMemory.get(0).mapId; List<Segment<K, V>> inMemorySegments = new ArrayList<Segment<K,V>>(); long mergeOutputSize = createInMemorySegments(inMemorySegments, 0); int noInMemorySegments = inMemorySegments.size(); Path outputPath = mapOutputFile.getInputFileForWrite(mapId, reduceTask.getTaskID(), mergeOutputSize); Writer writer = new Writer(conf, rfs, outputPath, conf.getMapOutputKeyClass(), conf.getMapOutputValueClass(), codec, null); RawKeyValueIterator rIter = null; try { LOG.info("Initiating in-memory merge with " + noInMemorySegments + " segments..."); rIter = Merger.merge(conf, rfs, (Class<K>)conf.getMapOutputKeyClass(), (Class<V>)conf.getMapOutputValueClass(), inMemorySegments, inMemorySegments.size(), new Path(reduceTask.getTaskID().toString()), conf.getOutputKeyComparator(), reporter, spilledRecordsCounter, null); if (combinerRunner == null) { Merger.writeFile(rIter, writer, reporter, conf); } else { combineCollector.setWriter(writer); combinerRunner.combine(rIter, combineCollector); } writer.close(); LOG.info(reduceTask.getTaskID() + " Merge of the " + noInMemorySegments + " files in-memory complete." + " Local file is " + outputPath + " of size " + localFileSys.getFileStatus(outputPath).getLen()); } catch (Exception e) { //make sure that we delete the ondisk file that we created //earlier when we invoked cloneFileAttributes localFileSys.delete(outputPath, true); throw (IOException)new IOException ("Intermediate merge failed").initCause(e); } // Note the output of the merge FileStatus status = localFileSys.getFileStatus(outputPath); synchronized (mapOutputFilesOnDisk) { addToMapOutputFilesOnDisk(status); } } }
11.ReduceCopier.GetMapEventsThread线程的run方法。通过RPC询问TaskTracker,对每个完成的Event,获取maptask所在的服务器地址,即MapTask输出的地址,构造URL,加入到mapLocations,供copier线程获取。
public void run() { LOG.info(reduceTask.getTaskID() + " Thread started: " + getName()); do { try { int numNewMaps = getMapCompletionEvents(); if (numNewMaps > 0) { LOG.info(reduceTask.getTaskID() + ": " + "Got " + numNewMaps + " new map-outputs"); } Thread.sleep(SLEEP_TIME); } catch (InterruptedException e) { LOG.warn(reduceTask.getTaskID() + " GetMapEventsThread returning after an " + " interrupted exception"); return; } catch (Throwable t) { LOG.warn(reduceTask.getTaskID() + " GetMapEventsThread Ignoring exception : " + StringUtils.stringifyException(t)); } } while (!exitGetMapEvents); LOG.info("GetMapEventsThread exiting"); }
12.ReduceCopier.GetMapEventsThread线程的getMapCompletionEvents方法。通过RPC询问TaskTracker,对每个完成的Event,获取maptask所在的服务器地址,构造URL,加入到mapLocations。
private int getMapCompletionEvents() throws IOException { int numNewMaps = 0; //RPC调用Tasktracker的getMapCompletionEvents方法,获得MapTaskCompletionEventsUpdate,进而获得TaskCompletionEvents MapTaskCompletionEventsUpdate update = umbilical.getMapCompletionEvents(reduceTask.getJobID(), fromEventId.get(), MAX_EVENTS_TO_FETCH, reduceTask.getTaskID()); TaskCompletionEvent events[] = update.getMapTaskCompletionEvents(); // Check if the reset is required. // Since there is no ordering of the task completion events at the // reducer, the only option to sync with the new jobtracker is to reset // the events index if (update.shouldReset()) { fromEventId.set(0); obsoleteMapIds.clear(); // clear the obsolete map mapLocations.clear(); // clear the map locations mapping } // Update the last seen event ID fromEventId.set(fromEventId.get() + events.length); // Process the TaskCompletionEvents: // 1. Save the SUCCEEDED maps in knownOutputs to fetch the outputs. // 2. Save the OBSOLETE/FAILED/KILLED maps in obsoleteOutputs to stop // fetching from those maps. // 3. Remove TIPFAILED maps from neededOutputs since we don‘t need their // outputs at all. //对每个完成的Event,获取maptask所在的服务器地址,构造URL,加入到mapLocations,供copier线程获取。 for (TaskCompletionEvent event : events) { switch (event.getTaskStatus()) { case SUCCEEDED: { URI u = URI.create(event.getTaskTrackerHttp()); String host = u.getHost(); TaskAttemptID taskId = event.getTaskAttemptId(); int duration = event.getTaskRunTime(); if (duration > maxMapRuntime) { maxMapRuntime = duration; // adjust max-fetch-retries based on max-map-run-time maxFetchRetriesPerMap = Math.max(MIN_FETCH_RETRIES_PER_MAP, getClosestPowerOf2((maxMapRuntime / BACKOFF_INIT) + 1)); } URL mapOutputLocation = new URL(event.getTaskTrackerHttp() + "/mapOutput?job=" + taskId.getJobID() + "&map=" + taskId + "&reduce=" + getPartition()); List<MapOutputLocation> loc = mapLocations.get(host); if (loc == null) { loc = Collections.synchronizedList (new LinkedList<MapOutputLocation>()); mapLocations.put(host, loc); } loc.add(new MapOutputLocation(taskId, host, mapOutputLocation)); numNewMaps ++; } break; case FAILED: case KILLED: case OBSOLETE: { obsoleteMapIds.add(event.getTaskAttemptId()); LOG.info("Ignoring obsolete output of " + event.getTaskStatus() + " map-task: ‘" + event.getTaskAttemptId() + "‘"); } break; case TIPFAILED: { copiedMapOutputs.add(event.getTaskAttemptId().getTaskID()); LOG.info("Ignoring output of failed map TIP: ‘" + event.getTaskAttemptId() + "‘"); } break; } } return numNewMaps; } } }
13.ReduceTask.ReduceCopier的createKVIterator方法,从拷贝到的map输出创建RawKeyValueIterator,作为reduce的输入。
private RawKeyValueIterator createKVIterator( JobConf job, FileSystem fs, Reporter reporter) throws IOException { // merge config params Class<K> keyClass = (Class<K>)job.getMapOutputKeyClass(); Class<V> valueClass = (Class<V>)job.getMapOutputValueClass(); boolean keepInputs = job.getKeepFailedTaskFiles(); final Path tmpDir = new Path(getTaskID().toString()); final RawComparator<K> comparator = (RawComparator<K>)job.getOutputKeyComparator(); // segments required to vacate memory List<Segment<K,V>> memDiskSegments = new ArrayList<Segment<K,V>>(); long inMemToDiskBytes = 0; if (mapOutputsFilesInMemory.size() > 0) { TaskID mapId = mapOutputsFilesInMemory.get(0).mapId; inMemToDiskBytes = createInMemorySegments(memDiskSegments, maxInMemReduce); final int numMemDiskSegments = memDiskSegments.size(); if (numMemDiskSegments > 0 && ioSortFactor > mapOutputFilesOnDisk.size()) { // must spill to disk, but can‘t retain in-mem for intermediate merge final Path outputPath = mapOutputFile.getInputFileForWrite(mapId, reduceTask.getTaskID(), inMemToDiskBytes); final RawKeyValueIterator rIter = Merger.merge(job, fs, keyClass, valueClass, memDiskSegments, numMemDiskSegments, tmpDir, comparator, reporter, spilledRecordsCounter, null); final Writer writer = new Writer(job, fs, outputPath, keyClass, valueClass, codec, null); try { Merger.writeFile(rIter, writer, reporter, job); addToMapOutputFilesOnDisk(fs.getFileStatus(outputPath)); } catch (Exception e) { if (null != outputPath) { fs.delete(outputPath, true); } throw new IOException("Final merge failed", e); } finally { if (null != writer) { writer.close(); } } LOG.info("Merged " + numMemDiskSegments + " segments, " + inMemToDiskBytes + " bytes to disk to satisfy " + "reduce memory limit"); inMemToDiskBytes = 0; memDiskSegments.clear(); } else if (inMemToDiskBytes != 0) { LOG.info("Keeping " + numMemDiskSegments + " segments, " + inMemToDiskBytes + " bytes in memory for " + "intermediate, on-disk merge"); } } // segments on disk List<Segment<K,V>> diskSegments = new ArrayList<Segment<K,V>>(); long onDiskBytes = inMemToDiskBytes; Path[] onDisk = getMapFiles(fs, false); for (Path file : onDisk) { onDiskBytes += fs.getFileStatus(file).getLen(); diskSegments.add(new Segment<K, V>(job, fs, file, codec, keepInputs)); } LOG.info("Merging " + onDisk.length + " files, " + onDiskBytes + " bytes from disk"); Collections.sort(diskSegments, new Comparator<Segment<K,V>>() { public int compare(Segment<K, V> o1, Segment<K, V> o2) { if (o1.getLength() == o2.getLength()) { return 0; } return o1.getLength() < o2.getLength() ? -1 : 1; } }); // build final list of segments from merged backed by disk + in-mem List<Segment<K,V>> finalSegments = new ArrayList<Segment<K,V>>(); long inMemBytes = createInMemorySegments(finalSegments, 0); LOG.info("Merging " + finalSegments.size() + " segments, " + inMemBytes + " bytes from memory into reduce"); if (0 != onDiskBytes) { final int numInMemSegments = memDiskSegments.size(); diskSegments.addAll(0, memDiskSegments); memDiskSegments.clear(); RawKeyValueIterator diskMerge = Merger.merge( job, fs, keyClass, valueClass, diskSegments, ioSortFactor, numInMemSegments, tmpDir, comparator, reporter, false, spilledRecordsCounter, null); diskSegments.clear(); if (0 == finalSegments.size()) { return diskMerge; } finalSegments.add(new Segment<K,V>( new RawKVIteratorReader(diskMerge, onDiskBytes), true)); } return Merger.merge(job, fs, keyClass, valueClass, finalSegments, finalSegments.size(), tmpDir, comparator, reporter, spilledRecordsCounter, null); }
14.ReduceTask的runNewReducer方法。根据配置构造reducer以及其运行的上下文,调用reducer的reduce方法。
@SuppressWarnings("unchecked") private <INKEY,INVALUE,OUTKEY,OUTVALUE> void runNewReducer(JobConf job, final TaskUmbilicalProtocol umbilical, final TaskReporter reporter, RawKeyValueIterator rIter, RawComparator<INKEY> comparator, Class<INKEY> keyClass, Class<INVALUE> valueClass ) throws IOException,InterruptedException, ClassNotFoundException { //1. 构造TaskContext org.apache.hadoop.mapreduce.TaskAttemptContext taskContext = new org.apache.hadoop.mapreduce.TaskAttemptContext(job, getTaskID()); //2. 根据配置的Reducer类构造一个Reducer实例 org.apache.hadoop.mapreduce.Reducer<INKEY,INVALUE,OUTKEY,OUTVALUE> reducer = (org.apache.hadoop.mapreduce.Reducer<INKEY,INVALUE,OUTKEY,OUTVALUE>) ReflectionUtils.newInstance(taskContext.getReducerClass(), job); //3. 构造RecordWriter org.apache.hadoop.mapreduce.RecordWriter<OUTKEY,OUTVALUE> output = (org.apache.hadoop.mapreduce.RecordWriter<OUTKEY,OUTVALUE>) outputFormat.getRecordWriter(taskContext); job.setBoolean("mapred.skip.on", isSkipping()); //4. 构造Context,是Reducer运行的上下文 org.apache.hadoop.mapreduce.Reducer.Context reducerContext = createReduceContext(reducer, job, getTaskID(), rIter, reduceInputValueCounter, output, committer, reporter, comparator, keyClass, valueClass); reducer.run(reducerContext); output.close(reducerContext); }
15.抽象类Reducer的run方法。从上下文中取出一个key和该key对应的Value集合(Iterable<VALUEIN>类型),调用reducer的reduce方法进行处理。
public void run(Context context) throws IOException, InterruptedException { setup(context); while (context.nextKey()) { reduce(context.getCurrentKey(), context.getValues(), context); } cleanup(context); }
16.Reducer类的reduce,是用户一般会覆盖来执行reduce处理逻辑的方法。
@SuppressWarnings("unchecked") protected void reduce(KEYIN key, Iterable<VALUEIN> values, Context context ) throws IOException, InterruptedException { for(VALUEIN value: values) { context.write((KEYOUT) key, (VALUEOUT) value); }
完。
为了转载内容的一致性、可追溯性和保证及时更新纠错,转载时请注明来自:http://www.cnblogs.com/douba/p/hadoop_mapreduce_tasktracker_child_reduce.html。谢谢!