【Hadoop代码笔记】Hadoop作业提交之TaskTracker获取Task

一、概要描述

上上一篇博文上一篇博文中分别描述了jobTracker和其服务(功能)模块初始化完成后,接收JobClient提交的作业,并进行初始化。本文着重描述,JobTracker如何选择作业的Task分发到TaskTracker。本文只是描述一个TaskTracker如何从JobTracker获取Task任务。Task任务在TaskTracker如何执行将在后面博文中描述。

二、 流程描述  

1. TaskTracker在run中调用offerService()方法一直死循环的去连接Jobtracker,先Jobtracker发送心跳,发送自身状态,并从Jobtracker获取任务指令来执行。

2. 在JobTracker的heartbeat方法中,对于来自每一个TaskTracker的心跳请求,根据一定的作业调度策略调用assignTasks方法选择一定Task

3.Scheduler调用对应的LoadManager的canAssignMap方法和canAssignReduce方法以决定是否可以给tasktracker分配任务。默认的是CapBasedLoad,全局平均分配。即根据全局的任务槽数,全局的map任务数的比值得到一个load系数,该系数乘以待分配任务的tasktracker的最大map任务数,即是该tasktracker能分配得到的任务数。如果太tracker当前运行的任务数小于可运行的任务数,则任务可以分配新作业给他。(图中缺失了LoadManager的表达,也画不下了,就不加了。在代码详细分析中有)

3. Scheduler的调用TaskSelector的obtainNewMapTask或者obtainNewReduceTask选择Task。

4. 在DefaultTaskSelector中选择Task的方法其实只是封装了JobInProgress的对应方法。

5. JobTracker根据得到的Task构造TaskTrackerAction设置到到HeartbeatResponse返回给TaskTracker。

6. TaskTracker中将来自JobTracker的任务加入到TaskQueue中等待执行。

【Hadoop代码笔记】Hadoop作业提交之TaskTracker获取Task

三、代码详细

1.  TaskTracker的入口函数main

【Hadoop代码笔记】Hadoop作业提交之TaskTracker获取Task
  JobConf conf=new JobConf();
      // enable the server to track time spent waiting on locks
      ReflectionUtils.setContentionTracing
        (conf.getBoolean("tasktracker.contention.tracking", false));
      new TaskTracker(conf).run();
【Hadoop代码笔记】Hadoop作业提交之TaskTracker获取Task

2. TaskTracker的构造函数

【Hadoop代码笔记】Hadoop作业提交之TaskTracker获取Task
maxCurrentMapTasks = conf.getInt(
                  "mapred.tasktracker.map.tasks.maximum", 2);
maxCurrentReduceTasks = conf.getInt(
                  "mapred.tasktracker.reduce.tasks.maximum", 2);
this.jobTrackAddr = JobTracker.getAddress(conf);

//启动httpserver 展示tasktracker状态。
this.server = new HttpServer("task", httpBindAddress, httpPort,
        httpPort == 0, conf);
server.start();
this.httpPort = server.getPort();
//初始化方法
initialize();
【Hadoop代码笔记】Hadoop作业提交之TaskTracker获取Task

3. TaskTracker的initialize方法,完成TaskTracker的初始化工作。

主要流程

1)         检查可以创建本地文件夹

2)         清理或者初始化需要用到的实例集合变量

3)         初始化RPC服务器,接受task的请求。

4)         清除临时文件

5)         jobtracker的代理,负责处理和jobtracker的交互,通过RPC方式。

6)         一个线程,获取map完成事件。

7)         初始化内存管理

8)         分别启动map和reduce的tasklauncher

【Hadoop代码笔记】Hadoop作业提交之TaskTracker获取Task
 synchronized void initialize()
    {
  //检查可以创建本地文件夹
  checkLocalDirs(this.fConf.getLocalDirs());
  fConf.deleteLocalFiles(SUBDIR);
  //清理或者初始化需要用到的实例集合变量
  this.tasks.clear();
      this.runningTasks = new LinkedHashMap<TaskAttemptID, TaskInProgress>();
      this.runningJobs = new TreeMap<JobID, RunningJob>();
  this.jvmManager = new JvmManager(this);
  //初始化RPC服务器,接受task的请求。
    this.taskReportServer =
        RPC.getServer(this, bindAddress, tmpPort, 2 * max, false, this.fConf);
      this.taskReportServer.start();
    // 清除临时文件
      DistributedCache.purgeCache(this.fConf);
     cleanupStorage();

  //jobtracker的代理,负责处理和jobtracker的交互,通过RPC方式。
  this.jobClient = (InterTrackerProtocol) 
        RPC.waitForProxy(InterTrackerProtocol.class,
                         InterTrackerProtocol.versionID, 
                         jobTrackAddr, this.fConf);

  //一个线程,获取map完成事件。
      this.mapEventsFetcher = new MapEventsFetcherThread();
      mapEventsFetcher.setDaemon(true);
      mapEventsFetcher.setName(
                               "Map-events fetcher for all reduce tasks " + "on " +  taskTrackerName);
      mapEventsFetcher.start();
  //初始化内存管理
  initializeMemoryManagement();
  //分别启动map和reduce的tasklauncher
  mapLauncher = new TaskLauncher(maxCurrentMapTasks);
      reduceLauncher = new TaskLauncher(maxCurrentReduceTasks);
      mapLauncher.start();
      reduceLauncher.start();
  
}
【Hadoop代码笔记】Hadoop作业提交之TaskTracker获取Task

4. TaskTracker run方法,在其中一直尝试执行offerService方法

【Hadoop代码笔记】Hadoop作业提交之TaskTracker获取Task
public void run()
{
   while (running && !staleState && !shuttingDown && !denied) {
State osState = offerService();
}
}
【Hadoop代码笔记】Hadoop作业提交之TaskTracker获取Task

5. TaskTracker 的offerService方法

1)   通过RPC调用获得Jobtracker的系统目录。

2)   发送心跳并且获取Jobtracker的应答

3)   从JobTrackeer的应答中获取指令

4)   不同的指令类型执行不同的动作

5)   对于要launch的task加入到taskQueue中去

6)   对于清理动作,加入待清理的task集合,会有线程自动清理

7)   杀死那些过久未反馈进度的task

8)   当磁盘空间不够时,杀死某些task以腾出空间

【Hadoop代码笔记】Hadoop作业提交之TaskTracker获取Task
        State offerService()
        {
        //通过RPC调用获得Jobtracker的系统目录。
        String dir = jobClient.getSystemDir();
                  if (dir == null) {
                    throw new IOException("Failed to get system directory");
                  }
                  systemDirectory = new Path(dir);
                  systemFS = systemDirectory.getFileSystem(fConf);
                }
        // 发送心跳并且获取Jobtracker的应答
        HeartbeatResponse heartbeatResponse = transmitHeartBeat(now);
        //从JobTrackeer的应答中获取指令
        TaskTrackerAction[] actions = heartbeatResponse.getActions();
        //不同的指令类型执行不同的动作
        if (actions != null){ 
                  for(TaskTrackerAction action: actions) {
        //对于要launch的task加入到taskQueue中去
                    if (action instanceof LaunchTaskAction) {addToTaskQueue((LaunchTaskAction)action);            } else if (action instanceof CommitTaskAction) {
                      CommitTaskAction commitAction = (CommitTaskAction)action;
                      if (!commitResponses.contains(commitAction.getTaskID())) {commitResponses.add(commitAction.getTaskID());}
        //加入待清理的task集合,会有线程自动清理
        } else {tasksToCleanup.put(action);
                    }
                  }
                }
        //杀死那些过久未反馈进度的task
        markUnresponsiveTasks();
        //当磁盘空间不够时,杀死某些task以腾出空间
         killOverflowingTasks();
        }
【Hadoop代码笔记】Hadoop作业提交之TaskTracker获取Task

6. TaskTracker的 transmitHeartBeat方法,定时向JobTracker发心跳。其实是通过RPC的方式向调用Jobtracker的heartbeat方法。

【Hadoop代码笔记】Hadoop作业提交之TaskTracker获取Task
private HeartbeatResponse transmitHeartBeat(long now)
{
boolean askForNewTask;
long localMinSpaceStart;
synchronized (this) {
//判断该Tasktracker是否可以接受新的task,依赖于
      askForNewTask = (status.countMapTasks() < maxCurrentMapTasks || 
                       status.countReduceTasks() < maxCurrentReduceTasks) &&
                      acceptNewTasks; 
      localMinSpaceStart = minSpaceStart;
    }
if (askForNewTask) {
      checkLocalDirs(fConf.getLocalDirs());
//判断本地空间是否足够,以决定是否接受新的task
      askForNewTask = enoughFreeSpace(localMinSpaceStart);
 long freeDiskSpace = getFreeSpace();
 long totVmem = getTotalVirtualMemoryOnTT();
 long totPmem = getTotalPhysicalMemoryOnTT();
      status.getResourceStatus().setAvailableSpace(freeDiskSpace); status.getResourceStatus().setTotalVirtualMemory(totVmem); status.getResourceStatus().setTotalPhysicalMemory(totPmem); status.getResourceStatus().setMapSlotMemorySizeOnTT(mapSlotMemorySizeOnTT); status.getResourceStatus().setReduceSlotMemorySizeOnTT(reduceSlotSizeMemoryOnTT);
}  
//通过jobclient通过RPC的方式向调用Jobtracker的heartbeat方法。
HeartbeatResponse heartbeatResponse = jobClient.heartbeat(status, ustStarted,justInited, askForNewTask,                                                               heartbeatResponseId);
}
【Hadoop代码笔记】Hadoop作业提交之TaskTracker获取Task

 6. JobTracker的 heartbeat方法。Jobtracker 接受并处理 tasktracker上报的状态,在返回的应答信息中指示tasktracker完成启停job或启动某个task的动作。 

动作类型类

描述

CommitTaskAction

指示Task保存输出,即提交

KillJobAction

杀死属于这个Job的任何一个Task

KillTaskAction

杀死指定的Task

LaunchTaskAction

开启某个task

ReinitTrackerAction

重新初始化taskTracker

 主要流程如下:

1)       acceptTaskTracker(status)方法通过查询inHostsList(status) && !inExcludedHostsList确认Tasktracker是否在JobTracker的允许列表中。

2)       当得知TaskTracker重启的标记,从jobtracker的潜在故障名单中移除该tasktracker

3)       如果initialContact为否表示这次心跳请求不是该taskTracker第一次连接jobtracker,但是如果在jobtracker的trackerToHeartbeatResponseMap记录中没有之前的响应记录,则说明发生了笔记严重的错误。发送指令给tasktracker要求其重新初始化。

4)       如果这是有问题的tasktracker重新接回来的第一个心跳,则通知recoveryManager recoveryManager从的recoveredTrackers列表中移除该tracker以表示该tracker又正常的接回来了。

5)       如果initialContact != true 并且 revHeartbeatResponse != null表示上一个心跳应答存在,但是tasktracker表示第一次请求,则说上一个initialContact请求的应答丢失了,未传送到tasktracker。则只是简单的把原来的应答重发一下即可。

6)       构造应答的Id,是递加的。

7)       处理心跳,其实就是在jobTracker端更新该tasktracker的状态

8)       检查tasktracker可以运行新的task

9)       调用JobTracker配置的taskSceduler来调度task给对应的TaskTracker。从submit到JobTracker的Job列表中选择每个job的每个Task,适合交给该TaskTracker调度的Task

10)  把分配的Task加入到expireLaunchingTasks,监视并处理其是否超时。

11)  根据调度器发获得要启动的task构造LaunchTaskAction,通知taskTracker启动这些task。

12)  把属于该tasktracker的,job已经结束的task加入到killTasksList,发送到tasktracker杀死。即结束那些在tasktracker上已经结束了的作业的task,不管作业是完成还失败。

13)  判定哪些作业需要清理的,构造Action加入到action列表中。trackerToJobsToCleanup是一个结合,当job gc的时候,调用 finalizeJob进而调用 addJobForCleanup 把作业加入到trackerToJobsToCleanup中

14)  判定那些task可以提交输出,构造action加入到action列表。

15)  计算下一次心跳的间隔,设置到应答消息中。

16)  把上面这些Action设置到response中返回。

17)  把本次应答保存到trackerToHeartbeatResponseMap中

【Hadoop代码笔记】Hadoop作业提交之TaskTracker获取Task
  1 public synchronized HeartbeatResponse heartbeat(TaskTrackerStatus status, 
  2             boolean restarted,
  3             boolean initialContact,
  4             boolean acceptNewTasks, 
  5             short responseId) 
  6 throws IOException {
  7 
  8 //1) acceptTaskTracker(status)方法通过查询inHostsList(status) && !inExcludedHostsList确认Tasktracker是否在JobTracker的允许列表中。
  9 if (!acceptTaskTracker(status)) {
 10 throw new DisallowedTaskTrackerException(status);
 11 }
 12 String trackerName = status.getTrackerName();
 13 long now = System.currentTimeMillis();
 14 boolean isBlacklisted = false;
 15 if (restarted) {
 16 //2)当得知TaskTracker重启的标记,从jobtracker的潜在故障名单中移除该tasktracker
 17 faultyTrackers.markTrackerHealthy(status.getHost());
 18 } else {
 19 isBlacklisted = 
 20 faultyTrackers.shouldAssignTasksToTracker(status.getHost(), now);
 21 }
 22 
 23 HeartbeatResponse prevHeartbeatResponse =trackerToHeartbeatResponseMap.get(trackerName);
 24 boolean addRestartInfo = false;
 25 
 26 if (initialContact != true) {
 27 //3)如果initialContact为否表示这次心跳请求不是该taskTracker第一次连接jobtracker,但是如果在jobtracker的trackerToHeartbeatResponseMap记录中没有之前的响应记录,则说明发生了笔记严重的错误。发送指令给tasktracker要求其重新初始化。
 28 if (prevHeartbeatResponse == null) {
 29 // This is the first heartbeat from the old tracker to the newly 
 30 // started JobTracker
 31 //4)如果这是有问题的tasktracker重新接回来的第一个心跳,则通知recoveryManager
 32 if (hasRestarted()) {
 33 addRestartInfo = true;
 34 // recoveryManager从的recoveredTrackers列表中移除该tracker以表示该tracker又正常的接回来了。
 35 recoveryManager.unMarkTracker(trackerName);
 36 } else {
 37 //发送指令让tasktracker重新初始化。
 38 return new HeartbeatResponse(responseId, 
 39 new TaskTrackerAction[] {new ReinitTrackerAction()});
 40 }
 41 
 42 } else {
 43 
 44 //如果initialContact != true 并且 revHeartbeatResponse != null表示上一个心跳应答存在,但是tasktracker表示第一次请求,则说上一个initialContact请求的应答丢失了,未传送到tasktracker。则只是简单的把原来的应答重发一下即可。
 45 if (prevHeartbeatResponse.getResponseId() != responseId) {
 46 LOG.info("Ignoring ‘duplicate‘ heartbeat from ‘" + 
 47 trackerName + "‘; resending the previous ‘lost‘ response");
 48 return prevHeartbeatResponse;
 49 }
 50 }
 51 }
 52 
 53 // 应答的Id是递加的。 
 54 short newResponseId = (short)(responseId + 1);
 55 status.setLastSeen(now);
 56 //处理心跳,其实就是在jobTracker端更新该tasktracker的状态
 57 if (!processHeartbeat(status, initialContact)) {
 58 if (prevHeartbeatResponse != null) {
 59 trackerToHeartbeatResponseMap.remove(trackerName);
 60 }
 61 return new HeartbeatResponse(newResponseId, 
 62 new TaskTrackerAction[] {new ReinitTrackerAction()});
 63 }
 64 
 65 // 检查tasktracker可以运行新的task
 66 if (recoveryManager.shouldSchedule() && acceptNewTasks && !isBlacklisted) {
 67 TaskTrackerStatus taskTrackerStatus = getTaskTracker(trackerName);
 68 if (taskTrackerStatus == null) {
 69 } else {
 70 List<Task> tasks = getSetupAndCleanupTasks(taskTrackerStatus);
 71 if (tasks == null ) {
 72 //2调用JobTracker配置的taskSceduler来调度task给对应的TaskTracker。从submit到JobTracker的Job列表中选择每个job的每个Task,适合交给该TaskTracker调度的Task
 73 
 74 tasks = taskScheduler.assignTasks(taskTrackerStatus);}
 75 if (tasks != null) {
 76 //把分配的Task加入到expireLaunchingTasks,监视并处理其是否超时。
 77 for (Task task : tasks) {
 78 Object expireLaunchingTasks;
 79 expireLaunchingTasks.addNewTask(task.getTaskID());
 80 actions.add(new LaunchTaskAction(task));
 81 }
 82 }
 83 }
 84 }
 85 
 86 //把属于该tasktracker的,job已经结束的task加入到killTasksList,发送到tasktracker杀死。即结束那些在tasktracker上已经结束了的作业的task,不管作业是完成还失败。
 87 List<TaskTrackerAction> killTasksList = getTasksToKill(trackerName);
 88 if (killTasksList != null) {
 89 actions.addAll(killTasksList);
 90 }
 91 
 92 //判定哪些作业需要清理。finalizeJob-> addJobForCleanup 当gc一个job的时候,会调用以上方法把其加入到trackerToJobsToCleanup中
 93 List<TaskTrackerAction> killJobsList = getJobsForCleanup(trackerName);
 94 if (killJobsList != null) {
 95 actions.addAll(killJobsList);
 96 
 97 //判定那些task可以提交输出。
 98 List<TaskTrackerAction> commitTasksList = getTasksToSave(status);
 99 if (commitTasksList != null) {
100 actions.addAll(commitTasksList);
101 }
102 
103 //calculate next heartbeat interval and put in heartbeat response
104 //计算下一次心跳的间隔,设置到应答消息中。
105 int nextInterval = getNextHeartbeatInterval();
106 response.setHeartbeatInterval(nextInterval);
107 
108 //把上面这些Action设置到response中返回。
109 response.setActions(actions.toArray(new TaskTrackerAction[actions.size()]));
110 //把本次应答保存到trackerToHeartbeatResponseMap中
111 trackerToHeartbeatResponseMap.put(trackerName, response);
112 return response;
113 
114 }
【Hadoop代码笔记】Hadoop作业提交之TaskTracker获取Task

7.FairScheduler的assignTasks方法。JobTracker就是调用该方法来实现作业的分配的。 

主要流程如下:

1)        分别计算可运行的maptask和reducetask总数

2)        ClusterStatus 维护了当前Map/Reduce作业框架的总体状况。根据ClusterStatus计算得到获得map task的槽数,reduce task的槽数。

3)        调用LoadManager方法决定是否可以为该tasktracker分配任务(默认CapBasedLoadManager方法根据全局的任务槽数,全局的map任务数的比值得到一个load系数,该系数乘以待分配任务的tasktracker的最大map任务数,即是该tasktracker能分配得到的任务数。如果太tracker当前运行的任务数小于可运行的任务数,则任务可以分配新作业给他)          

4)        从job列表中找出那些job需要运行map或reduce任务,加到List<JobInProgress> candidates集合中

5)        对candidates集合中的job排序,对每个job调用taskSelector的obtainNewMapTask或者obtainNewReduceTask方法获取要执行的task。把所以的task放到task集合中返回。从而实现了作业Job的任务Task分配。

6)        并对candidates集合中的每个job,更新Jobinfo信息,即其正在运行的task数,需要运行的task数,以便其后续调度用。

 

【Hadoop代码笔记】Hadoop作业提交之TaskTracker获取Task
 1     public synchronized List<Task> assignTasks(TaskTrackerStatus tracker)
 2             throws IOException {
 3         if (!initialized) // Don‘t try to assign tasks if we haven‘t yet started up
 4             return null;
 5 
 6         oolMgr.reloadAllocsIfNecessary();
 7 
 8         // 分别计算可运行的maptask和reducetask总数
 9         int runnableMaps = 0;
10         int runnableReduces = 0;
11         for (JobInProgress job: infos.keySet()) {
12             runnableMaps += runnableTasks(job, TaskType.MAP);
13             runnableReduces += runnableTasks(job, TaskType.REDUCE);
14         }
15 
16         // ClusterStatus 维护了当前Map/Reduce作业框架的总体状况。
17         ClusterStatus clusterStatus = taskTrackerManager.getClusterStatus();
18         //计算得到获得map task的槽数,reduce task的槽数。
19         int totalMapSlots = getTotalSlots(TaskType.MAP, clusterStatus);
20         int totalReduceSlots = getTotalSlots(TaskType.REDUCE, clusterStatus);
21 
22         //从job列表中找出那些job需要运行map或reduce任务,加到List<JobInProgress> candidates集合中
23         ArrayList<Task> tasks = new ArrayList<Task>();
24         TaskType[] types = new TaskType[] {TaskType.MAP, TaskType.REDUCE};
25         for (TaskType taskType: types) {
26             boolean canAssign = (taskType == TaskType.MAP) ? 
27                     //CapBasedLoadManager方法根据全局的任务槽数,全局的map任务数的比值得到一个load系数,该系数乘以待分配任务的tasktracker的最大map任务数,即是该tasktracker能分配得到的任务数。如果太tracker当前运行的任务数小于可运行的任务数,则任务可以分配新作业给他           
28                     loadMgr.canAssignMap(tracker, runnableMaps, totalMapSlots) :
29                         loadMgr.canAssignReduce(tracker, runnableReduces, totalReduceSlots);
30                     if (canAssign) {
31                         List<JobInProgress> candidates = new ArrayList<JobInProgress>();
32                         for (JobInProgress job: infos.keySet()) {
33                             if (job.getStatus().getRunState() == JobStatus.RUNNING && 
34                                     neededTasks(job, taskType) > 0) {
35                                 candidates.add(job);
36                             }
37                         }
38                         //对candidates集合中的job排序,对每个job调用taskSelector的obtainNewMapTask或者obtainNewReduceTask方法获取要执行的task。把所以的task放到task集合中返回。
39                         // Sort jobs by deficit (for Fair Sharing) or submit time (for FIFO)
40                         Comparator<JobInProgress> comparator = useFifo ?
41                                 new FifoJobComparator() : new DeficitComparator(taskType);
42                                 Collections.sort(candidates, comparator);
43                                 for (JobInProgress job: candidates) {
44                                     Task task = (taskType == TaskType.MAP ? 
45                                             taskSelector.obtainNewMapTask(tracker, job) :
46                                                 taskSelector.obtainNewReduceTask(tracker, job));
47                                     if (task != null) {
48                                         //并对candidates集合中的每个job,更新Jobinfo信息,即其正在运行的task数,需要运行的task数。
49                                         JobInfo info = infos.get(job);
50                                         if (taskType == TaskType.MAP) {
51                                             info.runningMaps++;
52                                             info.neededMaps--;
53                                         } else {
54                                             info.runningReduces++;
55                                             info.neededReduces--;
56                                         }
57                                         tasks.add(task);
58                                         if (!assignMultiple)
59                                             return tasks;
60                                         break;
61                                     }
62                                 }
63                     }
64         }
65 
66         // If no tasks were found, return null
67         return tasks.isEmpty() ? null : tasks;
68     }
【Hadoop代码笔记】Hadoop作业提交之TaskTracker获取Task

  8.CapBasedLoadManager的canAssignMap方法和canAssignReduce方法。一种简单的算法在FairScheduler中用来决定是否可以给某个tasktracker分配maptask或者reducetask。总体思路是对于某种类型的task,map或者reduce,考虑jobtracker管理的mapreduce集群全部的任务数,和全部的任务槽数,和该tasktracker上面当前的任务数,以决定是否给他分配任务。如对于maptask,根据全局的任务槽数,全局的map任务数的比值得到一个load系数,该系数乘以待分配任务的tasktracker的最大map任务数,即是该tasktracker能分配得到的任务数。如果太tracker当前运行的任务数小于可运行的任务数,则任务可以分配新作业给他。reducetask同理。即尽量做到全局平均。

【Hadoop代码笔记】Hadoop作业提交之TaskTracker获取Task
int getCap(int totalRunnableTasks, int localMaxTasks, int totalSlots) {
    double load = ((double)totalRunnableTasks) / totalSlots;
    return (int) Math.ceil(localMaxTasks * Math.min(1.0, load));
  }

  @Override
  public boolean canAssignMap(TaskTrackerStatus tracker,
      int totalRunnableMaps, int totalMapSlots) {
    return tracker.countMapTasks() < getCap(totalRunnableMaps,
        tracker.getMaxMapTasks(), totalMapSlots);
  }

  @Override
  public boolean canAssignReduce(TaskTrackerStatus tracker,
      int totalRunnableReduces, int totalReduceSlots) {
    return tracker.countReduceTasks() < getCap(totalRunnableReduces,
        tracker.getMaxReduceTasks(), totalReduceSlots);
  }
【Hadoop代码笔记】Hadoop作业提交之TaskTracker获取Task

9.   DefaultTaskSelector继承自TaskSelector,其两个方法其实只是对jobInprogress得封装,没有做什么特别的事情。

【Hadoop代码笔记】Hadoop作业提交之TaskTracker获取Task
 @Override
  public Task obtainNewMapTask(TaskTrackerStatus taskTracker, JobInProgress job)
      throws IOException {
    ClusterStatus clusterStatus = taskTrackerManager.getClusterStatus();
    int numTaskTrackers = clusterStatus.getTaskTrackers();
    return job.obtainNewMapTask(taskTracker, numTaskTrackers,
        taskTrackerManager.getNumberOfUniqueHosts());
  }

  @Override
  public Task obtainNewReduceTask(TaskTrackerStatus taskTracker, JobInProgress job)
      throws IOException {
    ClusterStatus clusterStatus = taskTrackerManager.getClusterStatus();
    int numTaskTrackers = clusterStatus.getTaskTrackers();
    return job.obtainNewReduceTask(taskTracker, numTaskTrackers,
        taskTrackerManager.getNumberOfUniqueHosts());
  }
【Hadoop代码笔记】Hadoop作业提交之TaskTracker获取Task

10. JobInProgress的obtainNewMapTask方法。其实主要逻辑是在findNewMapTask方法中实现。

【Hadoop代码笔记】Hadoop作业提交之TaskTracker获取Task
public synchronized Task obtainNewMapTask(TaskTrackerStatus tts, 
                                            int clusterSize, 
                                            int numUniqueHosts
                                           ) throws IOException {
           
    int target = findNewMapTask(tts, clusterSize, numUniqueHosts, anyCacheLevel,
                                status.mapProgress());
       
    Task result = maps[target].getTaskToRun(tts.getTrackerName());
    if (result != null) {
      addRunningTaskToTIP(maps[target], result.getTaskID(), tts, true);
    }

    return result;
  }   
【Hadoop代码笔记】Hadoop作业提交之TaskTracker获取Task

11  JobInProgress的findNewMapTask方法。
根据待派发Task的TaskTracker根据集群中的TaskTracker数量(clusterSize),运行TraskTracker的服务器数(numUniqueHosts),该Job中map task的平均进度(avgProgress),可以调度map的最大水平(距离其实),选择一个task执行。考虑到map的本地化。

【Hadoop代码笔记】Hadoop作业提交之TaskTracker获取Task
    private synchronized int findNewMapTask(final TaskTrackerStatus tts, 
            final int clusterSize,
            final int numUniqueHosts,
            final int maxCacheLevel,
            final double avgProgress) {
        String taskTracker = tts.getTrackerName();
        TaskInProgress tip = null;


        //1)更新TaskTracker总数。
        this.clusterSize = clusterSize;

        //2)如果这个TraskTracker上面之前有很多map都会失败,则返回标记,不分配给他。
        if (!shouldRunOnTaskTracker(taskTracker)) {
            return -1;


            //3) 检查该TaskTracker有足够的资源运行。估算output的方法有点意思,根据(job现有的map数+当前job的map数)*已完成map数*2*已完成的map的输出size/已经完成map的输入size,即根据完成估算总数。
            long outSize = resourceEstimator.getEstimatedMapOutputSize();
            long availSpace = tts.getResourceStatus().getAvailableSpace();
            if(availSpace < outSize) {
                LOG.warn("No room for map task. Node " + tts.getHost() + 
                        " has " + availSpace + 
                        " bytes free; but we expect map to take " + outSize);
                return -1; 
            }


            // For scheduling a map task, we have two caches and a list (optional)
            //  I)   one for non-running task
            //  II)  one for running task (this is for handling speculation)
            //  III) a list of TIPs that have empty locations (e.g., dummy splits),
            //       the list is empty if all TIPs have associated locations

            // First a look up is done on the non-running cache and on a miss, a look 
            // up is done on the running cache. The order for lookup within the cache:
            //   1. from local node to root [bottom up]
            //   2. breadth wise for all the parent nodes at max level

            // We fall to linear scan of the list (III above) if we have misses in the 
            // above caches

            //4)获得jobTracker所在的Node
            Node node = jobtracker.getNode(tts.getHost());

            // I) Non-running TIP :
            //5) 从未运行的作业集合中选择一个nonRunningMapCache 加入到运行集合runningMapCache中。加入时根据待添加的Task的split的位置信息,在runningMapCache中保存Node和Task集合的对应关系。

            // 1. check from local node to the root [bottom up cache lookup]
            //    i.e if the cache is available and the host has been resolved
            //    (node!=null)
            if (node != null) {
                Node key = node;
                int level = 0;
                // maxCacheLevel might be greater than this.maxLevel if findNewMapTask is
                // called to schedule any task (local, rack-local, off-switch or speculative)
                // tasks or it might be NON_LOCAL_CACHE_LEVEL (i.e. -1) if findNewMapTask is
                //  (i.e. -1) if findNewMapTask is to only schedule off-switch/speculative
                // tasks
                //从taskTracker本地开始由近至远查找要加入的Task 到runningMapCache中。
                int maxLevelToSchedule = Math.min(maxCacheLevel, maxLevel);
                for (level = 0;level < maxLevelToSchedule; ++level) {
                    List <TaskInProgress> cacheForLevel = nonRunningMapCache.get(key);
                    if (cacheForLevel != null) {
                        tip = findTaskFromList(cacheForLevel, tts, 
                                numUniqueHosts,level == 0);
                        if (tip != null) {
                            // 把该map任务加入到runningMapCache
                            scheduleMap(tip);
                            return tip.getIdWithinJob();
                        }
                    }
                    key = key.getParent();
                }

                // Check if we need to only schedule a local task (node-local/rack-local)
                if (level == maxCacheLevel) {
                    return -1;
                }
            }

            //2. Search breadth-wise across parents at max level for non-running 
            //   TIP if
            //     - cache exists and there is a cache miss 
            //     - node information for the tracker is missing (tracker‘s topology
            //       info not obtained yet)

            // collection of node at max level in the cache structure
            Collection<Node> nodesAtMaxLevel = jobtracker.getNodesAtMaxLevel();

            // get the node parent at max level
            Node nodeParentAtMaxLevel = 
                    (node == null) ? null : JobTracker.getParentNode(node, maxLevel - 1);

            for (Node parent : nodesAtMaxLevel) {

                // skip the parent that has already been scanned
                if (parent == nodeParentAtMaxLevel) {
                    continue;
                }

                List<TaskInProgress> cache = nonRunningMapCache.get(parent);
                if (cache != null) {
                    tip = findTaskFromList(cache, tts, numUniqueHosts, false);
                    if (tip != null) {
                        // Add to the running cache
                        scheduleMap(tip);

                        // remove the cache if empty
                        if (cache.size() == 0) {
                            nonRunningMapCache.remove(parent);
                        }
                        LOG.info("Choosing a non-local task " + tip.getTIPId());
                        return tip.getIdWithinJob();
                    }
                }
            }

            //搜索非本地Map
            tip = findTaskFromList(nonLocalMaps, tts, numUniqueHosts, false);
            if (tip != null) {
                // Add to the running list
                scheduleMap(tip);

                LOG.info("Choosing a non-local task " + tip.getTIPId());
                return tip.getIdWithinJob();
            }

            //
            // II) Running TIP :
            // 

            if (hasSpeculativeMaps) {
                long currentTime = System.currentTimeMillis();

                // 1. Check bottom up for speculative tasks from the running cache
                if (node != null) {
                    Node key = node;
                    for (int level = 0; level < maxLevel; ++level) {
                        Set<TaskInProgress> cacheForLevel = runningMapCache.get(key);
                        if (cacheForLevel != null) {
                            tip = findSpeculativeTask(cacheForLevel, tts, 
                                    avgProgress, currentTime, level == 0);
                            if (tip != null) {
                                if (cacheForLevel.size() == 0) {
                                    runningMapCache.remove(key);
                                }
                                return tip.getIdWithinJob();
                            }
                        }
                        key = key.getParent();
                    }
                }

                // 2. Check breadth-wise for speculative tasks

                for (Node parent : nodesAtMaxLevel) {
                    // ignore the parent which is already scanned
                    if (parent == nodeParentAtMaxLevel) {
                        continue;
                    }

                    Set<TaskInProgress> cache = runningMapCache.get(parent);
                    if (cache != null) {
                        tip = findSpeculativeTask(cache, tts, avgProgress, 
                                currentTime, false);
                        if (tip != null) {
                            // remove empty cache entries
                            if (cache.size() == 0) {
                                runningMapCache.remove(parent);
                            }
                            LOG.info("Choosing a non-local task " + tip.getTIPId() 
                                    + " for speculation");
                            return tip.getIdWithinJob();
                        }
                    }
                }

                // 3. Check non-local tips for speculation
                tip = findSpeculativeTask(nonLocalRunningMaps, tts, avgProgress, 
                        currentTime, false);
                if (tip != null) {
                    LOG.info("Choosing a non-local task " + tip.getTIPId() 
                            + " for speculation");
                    return tip.getIdWithinJob();
                }
            }

            return -1;

        }
【Hadoop代码笔记】Hadoop作业提交之TaskTracker获取Task

12  JobInProgress的obtainNewReduceTask方法返回一个ReduceTask,实际调用的是findNewReduceTask方法。

【Hadoop代码笔记】Hadoop作业提交之TaskTracker获取Task
public synchronized Task obtainNewReduceTask(TaskTrackerStatus tts,
                                               int clusterSize,
                                               int numUniqueHosts
                                              ) throws IOException {
  //判定有足够的map已经完成。,
    if (!scheduleReduces()) {
      return null;
    }

    int  target = findNewReduceTask(tts, clusterSize, numUniqueHosts, 
                                    status.reduceProgress());
    Task result = reduces[target].getTaskToRun(tts.getTrackerName());
    if (result != null) {
      addRunningTaskToTIP(reduces[target], result.getTaskID(), tts, true);
    }

    return result;
  }
【Hadoop代码笔记】Hadoop作业提交之TaskTracker获取Task

13 JobInProgress的findNewReduceTask方法,为指定的TaskTracker选择Reduce task。不用考虑本地化。

【Hadoop代码笔记】Hadoop作业提交之TaskTracker获取Task
private synchronized int findNewReduceTask(TaskTrackerStatus tts, 
                                             int clusterSize,
                                             int numUniqueHosts,
                                             double avgProgress) {
    String taskTracker = tts.getTrackerName();
    TaskInProgress tip = null;
    
    // Update the last-known clusterSize
    this.clusterSize = clusterSize;
    // 该taskTracker可用性符合要求
    if (!shouldRunOnTaskTracker(taskTracker)) {
      return -1;
    }

//估算Reduce的输入,根据map的总输出来和reduce的个数来计算。
    long outSize = resourceEstimator.getEstimatedReduceInputSize();
    long availSpace = tts.getResourceStatus().getAvailableSpace();
    if(availSpace < outSize) {
      LOG.warn("No room for reduce task. Node " + taskTracker + " has " +
                availSpace + 
               " bytes free; but we expect reduce input to take " + outSize);

      return -1; //see if a different TIP might work better. 
    }
    
    // 1. check for a never-executed reduce tip
    // reducers don‘t have a cache and so pass -1 to explicitly call that out
    tip = findTaskFromList(nonRunningReduces, tts, numUniqueHosts, false);
    if (tip != null) {
      scheduleReduce(tip);
      return tip.getIdWithinJob();
    }

    // 2. check for a reduce tip to be speculated
    if (hasSpeculativeReduces) {
      tip = findSpeculativeTask(runningReduces, tts, avgProgress, 
                                System.currentTimeMillis(), false);
      if (tip != null) {
        scheduleReduce(tip);
        return tip.getIdWithinJob();
      }
    }

    return -1;
  }
【Hadoop代码笔记】Hadoop作业提交之TaskTracker获取Task

14 TaskTracker 的addToTaskQueue方法。对于要launch的task加入到taskQueue中去,不同类型的Task有不同类型额launcher。

【Hadoop代码笔记】Hadoop作业提交之TaskTracker获取Task
private void addToTaskQueue(LaunchTaskAction action) {
    if (action.getTask().isMapTask()) {
      mapLauncher.addToTaskQueue(action);
    } else {
      reduceLauncher.addToTaskQueue(action);
    }
}
【Hadoop代码笔记】Hadoop作业提交之TaskTracker获取Task

完。

为了转载内容的一致性、可追溯性和保证及时更新纠错,转载时请注明来自:http://www.cnblogs.com/douba/p/hadoop_mapreduce_tasktracker_retrieve_task.html。谢谢!

【Hadoop代码笔记】Hadoop作业提交之TaskTracker获取Task

上一篇:java基础-流


下一篇:ubuntu.sh: 113: ubuntu.sh: Syntax error: "(" unexpected