POJ1659 Frogs' Neighborhood(Havel定理)

给一个无向图的度序列判定是否可图化,并求方案:

  • 可图化的判定:d1+d2+……dn=0(mod 2)。关于具体图的构造,我们可以简单地把奇数度的点配对,剩下的全部搞成自环。
  • 可简单图化的判定Havel定理):把序列排成不增序,即d1>=d2>=……>=dn,则d可简单图化当且仅当d’={d2-1,d3-1,……d(d1+1)-1, d(d1+2),d(d1+3),……dn}可简单图化。简单的说,把d排序后,找出度最大的点(设度为d1),把它与度次大的d1个点之间连边,然后这个点就可以不管了,一直继续这个过程,直到建出完整的图,或出现负度等明显不合理的情况。

这一题把青蛙看成点,邻居关系看成边,可以知道这是简单图(无重边、自环)。因此用Havel定理来判定,并且用上述方法来构造出一个解:

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; struct Frog{
int pos,deg;
bool operator<(const Frog &f)const{
return deg>f.deg;
}
}frog[]; int n;
bool ans[][];
bool Havel(){
for(int i=; i<n; ++i){
sort(frog+i,frog+n);
for(int j=; j<=frog[i].deg; ++j){
if(i+j>=n || frog[i+j].deg==) return ;
--frog[i+j].deg;
ans[frog[i].pos][frog[i+j].pos]=ans[frog[i+j].pos][frog[i].pos]=;
}
}
return ;
} int main(){
int t;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
for(int i=; i<n; ++i){
scanf("%d",&frog[i].deg);
frog[i].pos=i;
}
memset(ans,,sizeof(ans));
if(Havel()){
puts("YES");
for(int i=; i<n; ++i){
for(int j=; j<n; ++j){
printf("%d ",ans[i][j]);
}
putchar('\n');
}
}else{
puts("NO");
}
putchar('\n');
}
return ;
}
上一篇:HDU 2454 Degree Sequence of Graph G(Havel定理 推断一个简单图的存在)


下一篇:【Havel 定理】Degree Sequence of Graph G