关于深度学习之中Batch Size的一点理解(待更新)

batch 概念:训练时候一批一批的进行正向推导和反向传播。一批计算一次loss

mini batch:不去计算这个batch下所有的iter,仅计算一部分iter的loss平均值代替所有的。

以下来源:知乎

作者:陈志远

链接:https://zhuanlan.zhihu.com/p/83626029
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

(1) 不考虑bn的情况下,batch size的大小决定了深度学习训练过程中的完成每个epoch所需的时间每次迭代(iteration)之间梯度的平滑程度。(感谢评论区的韩飞同学提醒,batchsize只能说影响完成每个epoch所需要的时间,决定也算不上吧。根本原因还是CPU,GPU算力吧。瓶颈如果在CPU,例如随机数据增强,batch size越大有时候计算的越慢。

对于一个大小为N的训练集,如果每个epoch中mini-batch的采样方法采用最常规的N个样本每个都采样一次,设mini-batch大小为b,那么每个epoch所需的迭代次数(正向+反向)为 关于深度学习之中Batch Size的一点理解(待更新) , 因此完成每个epoch所需的时间大致也随着迭代次数的增加而增加

由于目前主流深度学习框架处理mini-batch的反向传播时,默认都是先将每个mini-batch中每个instance得到的loss平均化之后再反求梯度,也就是说每次反向传播的梯度是对mini-batch中每个instance的梯度平均之后的结果,所以b的大小决定了相邻迭代之间的梯度平滑程度,b太小,相邻mini-batch间的差异相对过大,那么相邻两次迭代的梯度震荡情况会比较严重,不利于收敛b越大,相邻mini-batch间的差异相对越小,虽然梯度震荡情况会比较小,一定程度上利于模型收敛,但如果b极端大,相邻mini-batch间的差异过小,相邻两个mini-batch的梯度没有区别了,整个训练过程就是沿着一个方向蹭蹭蹭往下走,很容易陷入到局部最小值出不来

总结下来:batch size过小,花费时间多,同时梯度震荡严重,不利于收敛;batch size过大,不同batch的梯度方向没有任何变化,容易陷入局部极小值。

(2)(存疑,只是突发奇想)如果硬件资源允许,想要追求训练速度使用超大batch,可以采用一次正向+多次反向的方法,避免模型陷入局部最小值。即使用超大epoch做正向传播,在反向传播的时候,分批次做多次反向转播,比如将一个batch size为64的batch,一次正向传播得到结果,instance级别求loss(先不平均),得到64个loss结果;反向传播的过程中,分四次进行反向传播,每次取16个instance的loss求平均,然后进行反向传播,这样可以做到在节约一定的训练时间,利用起硬件资源的优势的情况下,避免模型训练陷入局部最小值。

较小的batchsize,要设置小lr的原因之一,避免异常值对结果造成的扰巨大扰动。而对于较大的batchsize,要设置大一点的lr的原因则是大batch每次迭代的梯度方向相对固定,大lr可以加速其收敛过程。

上一篇:(转)创建和查看Javadoc文档


下一篇:java代理Proxy