Introduction to Linear Algebra(4) Vector Spaces

Vector Spaces

rules of vector space

for each u,vu,vu,v in vector space VVV. u+vu+vu+v, cucucu, cvcvcv are in VVV

The Null Space of a Matrix

the set of xxx that satisfy Ax=0Ax=0Ax=0 is the null space of the matrix AAA.

The column Space of a Matrix

The column space of m×nm \times nm×n matrix AAA written as ColACol AColA is a set of all linear combinations of the columns of AAA if A=[a1an]A=[a_1 \cdots a_n]A=[a1​⋯an​], thus
ColA=span{a1an} ColA=span\{a_1 \cdots a_n\} ColA=span{a1​⋯an​}
Noted:
column space of an m×nm \times nm×n matrix AAA is all of RmR^mRm if and only if the equation Ax=bAx=bAx=b has a solution for each b in RmR^mRm.

Kernel and Range of a Linear Transformation

For a linear transformation TTT:VWV\rightarrow WV→W, the kernel of TTT is a set of vectors xxx: for each uuu T(u)=0T(u)=0T(u)=0, the range of TTT is the set of all vectors in WWW of form T(x)T(x)T(x) for some xxx in VVV.
If this transformation is matrix transformation, then kernel of AAA is NulANul ANulA, range of AAA is ColACol AColA
β={b1,b2,bn}\beta=\{b_1,b_2,\cdots b_n\}β={b1​,b2​,⋯bn​} is the bais of HHH if: β\betaβ is a linear independent set and H=span{b1,b2, ,bn}H=span \{b_1,b_2,\cdots , b_n\}H=span{b1​,b2​,⋯,bn​}

Coordinate Systems

Suppose β={b1,b2,bn}\beta=\{b_1,b_2,\cdots b_n\}β={b1​,b2​,⋯bn​} is the basis for VVV and xxx is in VVV. The coordinates of xxx relative to the basis β\betaβ are weights c1, ,cnc_1,\cdots,c_nc1​,⋯,cn​ such that x=c1b1, ,cnbnx=c_1b_1,\cdots,c_nb_nx=c1​b1​,⋯,cn​bn​

The Coordinate Mapping

Let β={b1,b2,bn}\beta=\{b_1,b_2,\cdots b_n\}β={b1​,b2​,⋯bn​} be the basis of a vector space VVV. Then the coordinating mapping xxβx\rightarrow x_{\beta}x→xβ​ is a one-to-one linear transformation from VVV onto RnR^nRn

dimension of NulANul ANulA and ColACol AColA

Pivotal columns of a matrix AAA form a basis for ColAColAColA, thus the demension of ColACol AColA is the number of pivotal columns in AAA.
The dimension of NulANul ANulA is the free variables in equation Ax=0Ax=0Ax=0

row space

If two matrices AAA and BBB are row equivalent, then their row spaces are the same. If BBB is in echelon form, the nonzero rows of BBB form a basis for the row space of AAA as well as for that of BBB.

The rank theorem

the rank of AAA is the dimension of the column space of AAA.
Dimension of ColAColAColA and RowARowARowA for m×nm\times nm×n matrix AAA are equal. RankA+dimNulA=nRank A+dimNulA=nRankA+dimNulA=n

Rank and the Invertible Matrix Theorem

Let A be an n×nn \times nn×n matrix. Then the following statements are each equivalent to the statement that AAA is an invertible matrix.
m. The columns of AAA form a basis of RnR^nRn
n.ColA=RnCol A=R^nColA=Rn
o.dimColA=ndimColA=ndimColA=n
p.rankA=nrankA=nrankA=n
q.NulA={0}NulA=\{0\}NulA={0}
r.dimNulA=0dimNulA=0dimNulA=0

in practical, the effective rank of a matrix AAA is often determined from a singular value decomposition of AAA.
Let β={b1,b2, ,bn}\beta=\{b_1,b_2,\cdots,b_n\}β={b1​,b2​,⋯,bn​} and c={c1, ,cn}c=\{c_1,\cdots,c_n\}c={c1​,⋯,cn​} be the bases of a vector space VVV. Then there is a unique n×nn \times nn×n matrix PCB\mathop{P}\limits_{C\leftarrow B}C←BP​ such that [x]c=PCB[x]b[x]_c=\mathop{P}\limits_{C\leftarrow B}[x]_b[x]c​=C←BP​[x]b​
The columns of PCB\mathop{P}\limits_{C\leftarrow B}C←BP​ are CC-C− coordinate vecctors of the vectors in the basis β\betaβ. That is,PCB=[[b1]c[b2]c[bn]c]\mathop{P}\limits_{C\leftarrow B}=[ [b_1]_c[b_2]_c \cdots[b_n]_c]C←BP​=[[b1​]c​[b2​]c​⋯[bn​]c​]

Applications to Linear Difference Equations

If an0a_n \ne 0an​̸​=0 and if {zk}\{z_k\}{zk​} is given, the equation for all kkk: yk+n+a0yk+n1+a1yk+n2++anyk=zky_{k+n}+a_0y_{k+n-1}+a_1y_{k+n-2}+\cdots+a_ny_k=z_kyk+n​+a0​yk+n−1​+a1​yk+n−2​+⋯+an​yk​=zk​
has a uniques solution whenever the y0, ,yn1y_0,\cdots,y_{n-1}y0​,⋯,yn−1​ are specified.

The set of HHH of all solutions of the nnnth-order homogeneous linear difference equationyk+n+a0yk+n1+a1yk+n2++anyk=zky_{k+n}+a_0y_{k+n-1}+a_1y_{k+n-2}+\cdots+a_ny_k=z_kyk+n​+a0​yk+n−1​+a1​yk+n−2​+⋯+an​yk​=zk​ is an n-demensional vector space

Application to Markove Chains

A vector with nonnegative entries that add up to 1 is called a probability vector. A stochastic matrix is a square matrix whose columns are probability vectors. A markove chain is a sequence of probability vectors x0,x1,x2,x_0,x_1,x_2,\cdotsx0​,x1​,x2​,⋯, together with a stochastic matrix PPP, such that:
x1=Px0,x2=Px1,xn=Pxn1x_1=Px_0,x_2=Px_1,\cdots x_n=Px_{n-1}x1​=Px0​,x2​=Px1​,⋯xn​=Pxn−1​

上一篇:编写程序求500 以内的勾股弦数,即满足 c2=b2+a2的3个数,要求b>a。将所有符合要求的组合存入文本文件中,每个组合占一行。


下一篇:self-attention