NDArray自动求导

NDArray可以很方便的求解导数,比如下面的例子:(代码主要参考自https://zh.gluon.ai/chapter_crashcourse/autograd.html

NDArray自动求导

 用代码实现如下:

 1 import mxnet.ndarray as nd
 2 import mxnet.autograd as ag
 3 x = nd.array([[1,2],[3,4]])
 4 print(x)
 5 x.attach_grad() #附加导数存放的空间
 6 with ag.record():
 7     y = 2*x**2
 8 y.backward() #求导
 9 z = x.grad #将导数结果(也是一个矩阵)赋值给z
10 print(z) #打印结果
[[ 1.  2.]
 [ 3.  4.]]
<NDArray 2x2 @cpu(0)>

[[  4.   8.]
 [ 12.  16.]]
<NDArray 2x2 @cpu(0)>

 

对控制流求导

NDArray还能对诸如if的控制分支进行求导,比如下面这段代码:

1 def f(a):
2     if nd.sum(a).asscalar()<15: #如果矩阵a的元数和<15
3         b = a*2 #则所有元素*2
4     else:
5         b = a 
6     return b

数学公式等价于:

NDArray自动求导

这样就转换成本文最开头示例一样,变成单一函数求导,显然导数值就是x前的常数项,验证一下:

import mxnet.ndarray as nd
import mxnet.autograd as ag

def f(a):
    if nd.sum(a).asscalar()<15: #如果矩阵a的元数和<15
        b = a*2 #则所有元素平方
    else:
        b = a 
    return b

#注:1+2+3+4<15,所以进入b=a*2的分支
x = nd.array([[1,2],[3,4]])
print("x1=")
print(x)
x.attach_grad()
with ag.record():
    y = f(x)
print("y1=")
print(y)
y.backward() #dy/dx = y/x 即:2
print("x1.grad=")
print(x.grad)


x = x*2
print("x2=")
print(x)
x.attach_grad()
with ag.record():
    y = f(x)
print("y2=")
print(y)
y.backward()
print("x2.grad=")
print(x.grad)
x1=
[[ 1.  2.]
 [ 3.  4.]]
<NDArray 2x2 @cpu(0)>

y1= [[ 2. 4.] [ 6. 8.]] <NDArray 2x2 @cpu(0)>
x1.grad= [[ 2. 2.] [ 2. 2.]] <NDArray 2x2 @cpu(0)>
x2= [[ 2. 4.] [ 6. 8.]] <NDArray 2x2 @cpu(0)>
y2= [[ 2. 4.] [ 6. 8.]] <NDArray 2x2 @cpu(0)>
x2.grad= [[ 1. 1.] [ 1. 1.]] <NDArray 2x2 @cpu(0)>

 

头梯度

原文上讲得很含糊,其实所谓头梯度,就是一个求导结果前的乘法系数,见下面代码:

 1 import mxnet.ndarray as nd
 2 import mxnet.autograd as ag
 3 
 4 x = nd.array([[1,2],[3,4]])
 5 print("x=")
 6 print(x)
 7 
 8 x.attach_grad()
 9 with ag.record():
10     y = 2*x*x
11 
12 head = nd.array([[10, 1.], [.1, .01]]) #所谓的"头梯度"
13 print("head=")
14 print(head)
15 y.backward(head_gradient) #用头梯度求导
16 
17 print("x.grad=")
18 print(x.grad) #打印结果
x=
[[ 1.  2.]
 [ 3.  4.]]
<NDArray 2x2 @cpu(0)>

head= [[ 10. 1. ] [ 0.1 0.01]] <NDArray 2x2 @cpu(0)>
x.grad= [[ 40. 8. ] [ 1.20000005 0.16 ]] <NDArray 2x2 @cpu(0)>

对比本文最开头的求导结果,上面的代码仅仅多了一个head矩阵,最终的结果,其实就是在常规求导结果的基础上,再乘上head矩阵(指:数乘而非叉乘)

NDArray自动求导

 

链式法则

先复习下数学

NDArray自动求导

注:最后一行中所有变量x,y,z都是向量(即:矩形),为了不让公式看上去很凌乱,就统一省掉了变量上的箭头。NDArray对复合函数求导时,已经自动应用了链式法则,见下面的示例代码:

 1 import mxnet.ndarray as nd
 2 import mxnet.autograd as ag
 3 
 4 x = nd.array([[1,2],[3,4]])
 5 print("x=")
 6 print(x)
 7 
 8 x.attach_grad()
 9 with ag.record():
10     y = x**2
11     z = y**2 + y
12 
13 z.backward()
14 
15 print("x.grad=")
16 print(x.grad) #打印结果
17 
18 print("w=")
19 w = 4*x**3 + 2*x
20 print(w) # 验证结果
x=
[[ 1.  2.]
 [ 3.  4.]]
<NDArray 2x2 @cpu(0)>

x.grad= [[ 6. 36.] [ 114. 264.]] <NDArray 2x2 @cpu(0)>
w= [[ 6. 36.] [ 114. 264.]] <NDArray 2x2 @cpu(0)>

 

上一篇:程序员应具备的素质


下一篇:什么是mysql数据库?简单又通俗