Advanced ML Chapter12-Multi-Task Learning

Advanced ML Chapter12-Multi-Task Learning
Advanced ML Chapter12-Multi-Task Learning
Advanced ML Chapter12-Multi-Task Learning
Advanced ML Chapter12-Multi-Task Learning
Advanced ML Chapter12-Multi-Task Learning
Advanced ML Chapter12-Multi-Task Learning
Advanced ML Chapter12-Multi-Task Learning
Advanced ML Chapter12-Multi-Task Learning
Advanced ML Chapter12-Multi-Task Learning
Advanced ML Chapter12-Multi-Task Learning
Advanced ML Chapter12-Multi-Task Learning
Advanced ML Chapter12-Multi-Task Learning
Advanced ML Chapter12-Multi-Task Learning
Advanced ML Chapter12-Multi-Task Learning
Advanced ML Chapter12-Multi-Task Learning
下面的要训练m次。
Advanced ML Chapter12-Multi-Task Learning
Advanced ML Chapter12-Multi-Task Learning
假设所有任务之间,有共同的一个参数ω0.
ωi = ω0 + Δωi的意思是ωi在ω0的基础上,有一个变化量 Δωi
Advanced ML Chapter12-Multi-Task Learning
λ Δ||ω||2加了正则想,如果多任务的相关性比较强,那么loss就比较低,训练的比较好。但是如果它们的相关性很低,Δω就会比较大,loss就会很大。
Advanced ML Chapter12-Multi-Task Learning
rank最少的,非共线的向量的数量。如果是共线向量,这两个向量在机器学习中表达的含义是一样的。比如(1,2,3)表示and这个单词,(2,4,6)表示也是and的含义。
Advanced ML Chapter12-Multi-Task Learning
Advanced ML Chapter12-Multi-Task Learning
Advanced ML Chapter12-Multi-Task Learning
Advanced ML Chapter12-Multi-Task Learning
PT将三个向量,映射到相似的方向上。task就更加的相关了。
Advanced ML Chapter12-Multi-Task Learning
Advanced ML Chapter12-Multi-Task Learning
Advanced ML Chapter12-Multi-Task Learning
第3张图中,可以看到Δω保留了原task的方向信息。
Advanced ML Chapter12-Multi-Task Learning
Advanced ML Chapter12-Multi-Task Learning
Advanced ML Chapter12-Multi-Task Learning
Advanced ML Chapter12-Multi-Task Learning

上一篇:任何进行推理的系统都必须具有一些基本的智能


下一篇:ACM计算经济学会议现场速报:偏理论的学术会议,如今开始拥抱应用问题