HDU 5280 Senior's Array 最大区间和

题意:给定n个数。要求必须将当中某个数改为P,求修改后最大的区间和能够为多少。

水题。枚举每一个区间。假设该区间不改动(即改动该区间以外的数),则就为该区间和,若该区间要改动,由于必须改动,所以肯定是把最小的数改动为P能保证该区间最后和最大,所以比較两种方案的较大者。对于每一个区间取出的较大者,再取总共的最大者就可以。注意一个trick,枚举到整个区间的时候,是必需要改动一个数的。所以这个最大的这个区间仅仅有一种方案。

先预处理1~i的区间和,维护每一个区间的最小值和区间和。

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <string>
#include <algorithm>
#include <stack>
#include <queue>
#include <vector>
#include <map>
#include <set>
using namespace std; const int MAX = 1005;
const int INF = 1e9; int n;
__int64 P, a[MAX];
__int64 sum[MAX], smallest[MAX][MAX]; void input()
{
scanf("%d%I64d", &n, &P);
for(int i = 1; i <= n; i++)
scanf("%I64d", &a[i]);
} void solve()
{
smallest[0][0] = INF;
sum[0] = 0;
__int64 ans = P;
for(int i = 1; i <= n; i++)
sum[i] = sum[i - 1] + a[i];
for(int i = 1; i <= n; i++)
{
smallest[i][i] = a[i];
ans = max(ans, a[i]);
for(int j = i + 1; j <= n; j++)
{
smallest[i][j] = min(smallest[i][j - 1], a[j]);
ans = max(ans, sum[j] - sum[i - 1] - smallest[i][j] + P);
if(i != 1 || j != n)
ans = max(ans, sum[j] - sum[i - 1]);
}
}
printf("%I64d\n", ans);
} int main()
{
int T;
scanf("%d", &T);
while(T--)
{
input();
solve();
}
return 0;
}
上一篇:编写高质量代码改善C#程序的157个建议——建议153:若抛出异常,则必须要注释


下一篇:编写高质量代码改善C#程序的157个建议——建议152:最少,甚至是不要注释