CvMat、Mat、IplImage之间的转换详解及实例

见原博客:http://blog.sina.com.cn/s/blog_74a459380101obhm.html

OpenCV学习之CvMat的用法详解及实例

CvMat是OpenCV比较基础的函数。初学者应该掌握并熟练应用。但是我认为计算机专业学习的方法是,不断的总结并且提炼,同时还要做大量的实践,如编码,才能记忆深刻,体会深刻,从而引导自己想更高层次迈进。

1.初始化矩阵:

方式一、逐点赋值式:

CvMat* mat = cvCreateMat( , , CV_64FC1 );
cvZero( mat );
cvmSet( mat, , , );
cvmSet( mat, , , );
cvmSet( mat, , , );
cvmSet( mat, , , );
cvReleaseMat( &mat );

方式二、连接现有数组式:

double a[] = { , , , ,    , , , ,    , , ,  };
CvMat mat = cvMat( , , CV_64FC1, a ); // 64FC1 for double
// 不需要cvReleaseMat,因为数据内存分配是由double定义的数组进行的。

2.IplImage <----->cvMat的转换

A.CvMat-> IplImage

IplImage* img = cvCreateImage(cvGetSize(mat),,);
cvGetImage(matI,img); cvSaveImage("rice1.bmp",img);

B.IplImage -> CvMat

IplImage* img = cvLoadimage("leda.jpg",);

//法2:
CvMat *mat = cvCreateMat( img->height, img->width, CV_64FC3 );
cvConvert( img, mat ); //法1:
CvMat mathdr;
CvMat *mat = cvGetMat( img, &mathdr );

3.IplImage <--->Mat的转换

(1)将IplImage----- > Mat类型

Mat::Mat(const IplImage* img, bool copyData=false);

默认情况下,新的Mat类型与原来的IplImage类型共享图像数据,转换只是创建一个Mat矩阵头。当将参数copyData设为true后,就会复制整个图像数据。

例:

IplImage*iplImg = cvLoadImage("greatwave.jpg", );

Matmtx(iplImg); // IplImage* ->Mat 共享数据

// or : Mat mtx = iplImg;或者是:Mat mtx(iplImg,0); // 0是不复制影像,也就是iplImg的data共用同个记意位置,header各自有

(2)将Mat类型转换-----> IplImage类型

同样只是创建图像头,而没有复制数据。

例:

IplImage ipl_img = img; // Mat -> IplImage

IplImage*-> BYTE*

BYTE* data= img->imageData;

4.CvMat<--->Mat的转换

(1)将CvMat类型转换为Mat类型

B.CvMat->Mat

与IplImage的转换类似,可以选择是否复制数据。

CvMat*m= cvCreatMat(int rows ,int cols , int type);

Mat::Mat(const CvMat* m, bool copyData=false);

在openCV中,没有向量(vector)的数据结构。任何时候,但我们要表示向量时,用矩阵数据表示即可。

但是,CvMat类型与我们在线性代数课程上学的向量概念相比,更抽象,比如CvMat的元素数据类型并不仅限于基础数据类型,比如,下面创建一个二维数据矩阵:

CvMat*m= cvCreatMat(int rows ,int cols , int type);

这里的type可以是任意的预定义数据类型,比如RGB或者别的多通道数据。这样我们便可以在一个CvMat矩阵上表示丰富多彩的图像了。

(2)将Mat类型转换为CvMat类型

与IplImage的转换类似,不复制数据,只创建矩阵头。

例:

//假设Mat类型的imgMat图像数据存在

CvMat cvMat = imgMat; // Mat -> CvMat

5.cv::Mat--->const cvArr*

cvArr * 数组的指针。就是opencv里面的一种类型。

Mat img;
const CvArr* s=(CvArr*)&img;
上面就可以了,CvArr是Mat的虚基类,所有直接强制转换就可以了

void cvResize( const CvArr*src, CvArr* dst, int interpolation=CV_INTER_LINEAR );// src 就是之前的lplimage类型的一个指针变量

6.cvArr(IplImage或者cvMat)转化为cvMat
方式一、cvGetMat方式:

int coi = ;
cvMat *mat = (CvMat*)arr;
if( !CV_IS_MAT(mat) )
{
mat = cvGetMat( mat, &matstub, &coi );
if (coi != ) reutn; // CV_ERROR_FROM_CODE(CV_BadCOI);
}

写成函数为:

// This is just an example of function
// to support both IplImage and cvMat as an input
CVAPI( void ) cvIamArr( const CvArr* arr )
{
CV_FUNCNAME( "cvIamArr" );
__BEGIN__;
CV_ASSERT( mat == NULL );
CvMat matstub, *mat = (CvMat*)arr;
int coi = ;
if( !CV_IS_MAT(mat) )
{
CV_CALL( mat = cvGetMat( mat, &matstub, &coi ) );
if (coi != ) CV_ERROR_FROM_CODE(CV_BadCOI);
}
// Process as cvMat
__END__;
}

7.图像直接操作
方式一:直接数组操作 int col, row, z;

uchar b, g, r;
for( row = ; row < img->height; y++ )
{
for ( col = ; col < img->width; col++ )
{
b = img->imageData[img->widthStep * row + col * ]
g = img->imageData[img->widthStep * row + col * + ];
r = img->imageData[img->widthStep * row + col * + ];
}
}

方式二:宏操作:

int row, col;
uchar b, g, r;
for( row = ; row < img->height; row++ )
{
for ( col = ; col < img->width; col++ )
{
b = CV_IMAGE_ELEM( img, uchar, row, col * );
g = CV_IMAGE_ELEM( img, uchar, row, col * + );
r = CV_IMAGE_ELEM( img, uchar, row, col * + );
}
}

注:CV_IMAGE_ELEM( img, uchar, row, col * img->nChannels + ch )

8.cvMat的直接操作
数组的直接操作比较郁闷,这是由于其决定于数组的数据类型。

对于CV_32FC1 (1 channel float):

CvMat* M = cvCreateMat( , , CV_32FC1 );
M->data.fl[ row * M->cols + col ] = (float)3.0;

对于CV_64FC1 (1 channel double):

CvMat* M = cvCreateMat( , , CV_64FC1 );
M->data.db[ row * M->cols + col ] = 3.0;

一般的,对于1通道的数组:

CvMat* M = cvCreateMat( , , CV_64FC1 );
CV_MAT_ELEM( *M, double, row, col ) = 3.0;

注意double要根据数组的数据类型来传入,这个宏对多通道无能为力。

对于多通道:
看看这个宏的定义:#define CV_MAT_ELEM_CN( mat, elemtype, row, col ) \
    (*(elemtype*)((mat).data.ptr + (size_t)(mat).step*(row) + sizeof(elemtype)*(col)))
if( CV_MAT_DEPTH(M->type) == CV_32F )
    CV_MAT_ELEM_CN( *M, float, row, col * CV_MAT_CN(M->type) + ch ) = 3.0;
if( CV_MAT_DEPTH(M->type) == CV_64F )
    CV_MAT_ELEM_CN( *M, double, row, col * CV_MAT_CN(M->type) + ch ) = 3.0;
更优化的方法是:

   #define CV_8U   0
#define CV_8S 1
#define CV_16U 2
#define CV_16S 3
#define CV_32S 4
#define CV_32F 5
#define CV_64F 6
#define CV_USRTYPE1 7 int elem_size = CV_ELEM_SIZE( mat->type );
for( col = start_col; col < end_col; col++ ) {
for( row = ; row < mat->rows; row++ ) {
for( elem = ; elem < elem_size; elem++ ) {
(mat->data.ptr + ((size_t)mat->step * row) + (elem_size * col))[elem] =
(submat->data.ptr + ((size_t)submat->step * row) + (elem_size * (col - start_col)))[elem];
}
}
}

对于多通道的数组,以下操作是推荐的:

for(row=; row< mat->rows; row++)
{
p = mat->data.fl + row * (mat->step/);
for(col = ; col < mat->cols; col++)
{
*p = (float) row+col;
*(p+) = (float) row+col+;
*(p+) =(float) row+col+;
p+=;
}
}

对于两通道和四通道而言:

CvMat* vector = cvCreateMat( , , CV_32SC2 );
CV_MAT_ELEM( *vector, CvPoint, , ) = cvPoint(,); CvMat* vector = cvCreateMat( , , CV_64FC4 );
CV_MAT_ELEM( *vector, CvScalar, , ) = cvScalar(,,,);

9.间接访问cvMat
cvmGet/Set是访问CV_32FC1 和 CV_64FC1型数组的最简便的方式,其访问速度和直接访问几乎相同
cvmSet( mat, row, col, value );
cvmGet( mat, row, col );
举例:打印一个数组

inline void cvDoubleMatPrint( const CvMat* mat )
{
int i, j;
for( i = ; i < mat->rows; i++ )
{
for( j = ; j < mat->cols; j++ )
{
printf( "%f ",cvmGet( mat, i, j ) );
}
printf( "\n" );
}
}

而对于其他的,比如是多通道的后者是其他数据类型的,cvGet/Set2D是个不错的选择
CvScalar scalar = cvGet2D( mat, row, col );
cvSet2D( mat, row, col, cvScalar( r, g, b ) );

注意:数据不能为int,因为cvGet2D得到的实质是double类型。
举例:打印一个多通道矩阵:

inline void cv3DoubleMatPrint( const CvMat* mat )
{
int i, j;
for( i = ; i < mat->rows; i++ )
{
for( j = ; j < mat->cols; j++ )
{
CvScalar scal = cvGet2D( mat, i, j );
printf( "(%f,%f,%f) ", scal.val[], scal.val[], scal.val[] );
}
printf( "\n" );
}
}

10.修改矩阵的形状——cvReshape的操作
经实验表明矩阵操作的进行的顺序是:首先满足通道,然后满足列,最后是满足行。
注意:这和Matlab是不同的,Matlab是行、列、通道的顺序。
我们在此举例如下:
对于一通道:

// 1 channel
CvMat *mat, mathdr;
double data[] = { , , , ,
, , , ,
, , , };
CvMat* orig = &cvMat( , , CV_64FC1, data );
//11 12 13 14
//21 22 23 24
//31 32 33 34
mat = cvReshape( orig, &mathdr, , ); // new_ch, new_rows
cvDoubleMatPrint( mat ); // above
// 11 12 13 14 21 22 23 24 31 32 33 34
mat = cvReshape( mat, &mathdr, , ); // new_ch, new_rows
cvDoubleMatPrint( mat ); // above
//11 12 13 14
//21 22 23 24
//31 32 33 34
mat = cvReshape( orig, &mathdr, , ); // new_ch, new_rows
cvDoubleMatPrint( mat ); // above
// 11
// 12
// 13
// 14
// 21
// 22
// 23
// 24
// 31
// 32
// 33
//
mat = cvReshape( mat, &mathdr, , ); // new_ch, new_rows
cvDoubleMatPrint( mat ); // above
//11 12 13 14
//21 22 23 24
//31 32 33 34
mat = cvReshape( orig, &mathdr, , ); // new_ch, new_rows
cvDoubleMatPrint( mat ); // above
//11 12 13 14 21 22
//23 24 31 32 33 34
mat = cvReshape( mat, &mathdr, , ); // new_ch, new_rows
cvDoubleMatPrint( mat ); // above
//11 12 13 14
//21 22 23 24
//31 32 33 34
mat = cvReshape( orig, &mathdr, , ); // new_ch, new_rows
cvDoubleMatPrint( mat ); // above
// 11 12
// 13 14
// 21 22
// 23 24
// 31 32
// 33 34
mat = cvReshape( mat, &mathdr, , ); // new_ch, new_rows
cvDoubleMatPrint( mat ); // above
//11 12 13 14
//21 22 23 24
//31 32 33 34
// Use cvTranspose and cvReshape( mat, &mathdr, 1, 2 ) to get
// 11 23
// 12 24
// 13 31
// 14 32
// 21 33
// 22 34
// Use cvTranspose again when to recover

对于三通道

//221 222 223
// channel first, column second, row third
// memorize this transform because this is useful to
// add (or do something) color channels
CvMat* mat2 = cvCreateMat( mat->cols, mat->rows, mat->type );
cvTranspose( mat, mat2 );
cvDoubleMatPrint( mat2 ); // above
//111 121 211 221
//112 122 212 222
//113 123 213 223
cvReleaseMat( &mat2 );

11.计算色彩距离
我们要计算img1,img2的每个像素的距离,用dist表示,定义如下
IplImage *img1 = cvCreateImage( cvSize(w,h), IPL_DEPTH_8U, 3 );
IplImage *img2 = cvCreateImage( cvSize(w,h), IPL_DEPTH_8U, 3 );
CvMat *dist = cvCreateMat( h, w, CV_64FC1 );
比较笨的思路是:cvSplit->cvSub->cvMul->cvAdd
代码如下:

IplImage *img1B = cvCreateImage( cvGetSize(img1), img1->depth,  );
IplImage *img1G = cvCreateImage( cvGetSize(img1), img1->depth, );
IplImage *img1R = cvCreateImage( cvGetSize(img1), img1->depth, );
IplImage *img2B = cvCreateImage( cvGetSize(img1), img1->depth, );
IplImage *img2G = cvCreateImage( cvGetSize(img1), img1->depth, );
IplImage *img2R = cvCreateImage( cvGetSize(img1), img1->depth, );
IplImage *diff = cvCreateImage( cvGetSize(img1), IPL_DEPTH_64F, );
cvSplit( img1, img1B, img1G, img1R );
cvSplit( img2, img2B, img2G, img2R );
cvSub( img1B, img2B, diff );
cvMul( diff, diff, dist );
cvSub( img1G, img2G, diff );
cvMul( diff, diff, diff);
cvAdd( diff, dist, dist );
cvSub( img1R, img2R, diff );
cvMul( diff, diff, diff );
cvAdd( diff, dist, dist );
cvReleaseImage( &img1B );
cvReleaseImage( &img1G );
cvReleaseImage( &img1R );
cvReleaseImage( &img2B );
cvReleaseImage( &img2G );
cvReleaseImage( &img2R );
cvReleaseImage( &diff );

比较聪明的思路是

int D = img1->nChannels; // D: Number of colors (dimension)
int N = img1->width * img1->height; // N: number of pixels
CvMat mat1hdr, *mat1 = cvReshape( img1, &mat1hdr, , N ); // N x D(colors)
CvMat mat2hdr, *mat2 = cvReshape( img2, &mat2hdr, , N ); // N x D(colors)
CvMat diffhdr, *diff = cvCreateMat( N, D, CV_64FC1 ); // N x D, temporal buff
cvSub( mat1, mat2, diff );
cvMul( diff, diff, diff );
dist = cvReshape( dist, &disthdr, , N ); // nRow x nCol to N x 1
cvReduce( diff, dist, , CV_REDUCE_SUM ); // N x D to N x 1
dist = cvReshape( dist, &disthdr, , img1->height ); // Restore N x 1 to nRow x nCol
cvReleaseMat( &diff ); #pragma comment( lib, "cxcore.lib" )
#include "cv.h"
#include
int main()
{
CvMat* mat = cvCreateMat(,,CV_32FC1);
cvZero(mat);//将矩阵置0
//为矩阵元素赋值
CV_MAT_ELEM( *mat, float, , ) = .f;
CV_MAT_ELEM( *mat, float, , ) = .f;
CV_MAT_ELEM( *mat, float, , ) = .f;
CV_MAT_ELEM( *mat, float, , ) = .f;
CV_MAT_ELEM( *mat, float, , ) = .f;
CV_MAT_ELEM( *mat, float, , ) = .f;
CV_MAT_ELEM( *mat, float, , ) = .f;
CV_MAT_ELEM( *mat, float, , ) = .f;
CV_MAT_ELEM( *mat, float, , ) = .f;
//获得矩阵元素(0,2)的值
float *p = (float*)cvPtr2D(mat, , );
printf("%f\n",*p);
return ;
}
上一篇:【ALB学习笔记】基于事件触发方式的串行通信接口数据接收案例


下一篇:使用jasperreports-5.6.0.jar导致的问题